Buch, Englisch, 708 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1238 g
Buch, Englisch, 708 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1238 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-1-4419-9981-8
Verlag: Springer
This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A fewnew topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.
Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Preface.- 1 Smooth Manifolds.- 2 Smooth Maps.- 3 Tangent Vectors.- 4 Submersions, Immersions, and Embeddings.- 5 Submanifolds.- 6 Sard's Theorem.- 7 Lie Groups.- 8 Vector Fields.- 9 Integral Curves and Flows.- 10 Vector Bundles.- 11 The Cotangent Bundle.- 12 Tensors.- 13 Riemannian Metrics.- 14 Differential Forms.- 15 Orientations.- 16 Integration on Manifolds.- 17 De Rham Cohomology.- 18 The de Rham Theorem.- 19 Distributions and Foliations.- 20 The Exponential Map.- 21 Quotient Manifolds.- 22 Symplectic Manifolds.- Appendix A: Review of Topology.- Appendix B: Review of Linear Algebra.- Appendix C: Review of Calculus.- Appendix D: Review of Differential Equations.- References.- Notation Index.- Subject Index.