Buch, Englisch, Band 71, 104 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 138 g
Buch, Englisch, Band 71, 104 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 138 g
Reihe: Quantitative Applications in the Social Sciences
ISBN: 978-0-7619-3038-9
Verlag: Sage Publications, Inc.
This book examines ways to analyze complex surveys, and focuses on the problems of weights and design effects. This new edition incorporates recent practice of analyzing complex survey data, introduces the new analytic approach for categorical data analysis (logistic regression), reviews new software and provides an introduction to the model-based analysis that can be useful analyzing well-designed, relatively small-scale social surveys.
Autoren/Hrsg.
Fachgebiete
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziale Arbeit/Sozialpädagogik Soziale Arbeit/Sozialpädagogik, Theorie und Methoden
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Sozialwissenschaften Pädagogik Teildisziplinen der Pädagogik Sozialpädagogik
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziologie Allgemein Empirische Sozialforschung, Statistik
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Wirtschafts- und Sozialwissenschaften
Weitere Infos & Material
Series Editor’s Introduction
Acknowledgments
1. Introduction
2. Sample Design and Survey Data
Types of Sampling
The Nature of Survey Data
A Different View of Survey Data
3. Complexity of Analyzing Survey Data
Adjusting for Differential Representation: The Weight
Developing the Weight by Poststratification
Adjusting the Weight in a Follow-Up Survey
Assessing the Loss or Gain in Precision: The Design Effect
The Use of Sample Weights for Survey Data Analysis
4. Strategies for Variance Estimation
Replicated Sampling: A General Approach
Balanced Repeated Replication
Jackknife Repeated Replication
The Bootstrap Method
The Taylor Series Method (Linearization)
5. Preparing for Survey Data Analysis
Data Requirements for Survey Analysis
Importance of Preliminary Analysis
Choices of Method for Variance Estimation
Available Computing Resources
Creating Replicate Weights
Searching for Appropriate Models for Survey Data Analysis
6. Conducting Survey Data Analysis
A Strategy for Conducting Preliminary Analysis
Conducting Descriptive Analysis
Conducting Linear Regression Analysis
Conducting Contingency Table Analysis
Conducting Logistic Regression Analysis
Other Logistic Regression Models
Design-Based and Model-Based Analyses
7. Concluding Remarks
Notes
References
Index
About the Authors