Lee | Big Data, Cloud Computing, and Data Science Engineering | Buch | 978-3-031-19607-2 | sack.de

Buch, Englisch, Band 1075, 185 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 507 g

Reihe: Studies in Computational Intelligence

Lee

Big Data, Cloud Computing, and Data Science Engineering


1. Auflage 2023
ISBN: 978-3-031-19607-2
Verlag: Springer International Publishing

Buch, Englisch, Band 1075, 185 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 507 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-031-19607-2
Verlag: Springer International Publishing


This book presents scientific results of the 7 IEEE/ACIS International Conference on Big Data, Cloud Computing, Data Science & Engineering (BCD 2021) which was held on August 4-6, 2022 in Danang, Vietnam. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. All aspects (theory, applications, and tools) of computer and information science, the practical challenges encountered along the way, and the solutions adopted to solve them are all explored here in the results of the articles featured in this book.

The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee and underwent further rigorous rounds of review. From this second round of review, 15 of the conference’s most promising papers are then published in this Springer (SCI) book and not the conference proceedings. We impatiently await the important contributions that we know these authors will bring to the field of computer and information science.
Lee Big Data, Cloud Computing, and Data Science Engineering jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Research on Development of Sponsorship Effect Analysis Module Using Text Mining Technique.- A Study on the Relationship between ESG News Keywords and ESG Ratings.- Development of Associated Company Network Visualiza-tion Techniques using Company Product and Service In-formation – Using Cosine Similarity Function.- Hybrid CNN-LSTM based time series data prediction model study.- A Study on Predicting Employee Attrition Using Machine Learning.- A study on the Intention to continue using a Highway Driving assistance (HDA) system based on Advanced Driver Assistance System (ADAS).- Security Policy Deploying System for Zero Trust Environment.- TTY Session Audit Techniques for Linux Platform1.- A Study on the Role of Higher Education and Human Re-sources Development for Data Driven AI Society.- The Way Forward for Security Vulnerability Disclosure Policy: Comparative Analysis of US, EU, and Nether-lands.- Study on Government Data Governance Framework: based on the National Data Strategy in theUS, the UK, Australia, and Japan.- A Study on the Attack Index Packet Filtering Algorithm Based on Web Vulnerability.- Analysis of IoT research topics using LDA Modeling.- Log4j Vulnerability Analysis and Detection Pattern Pro-duction Technology based on Snort Rules.- A Study on Technology Innovation at Incheon International Airport: Focusing on RAISA.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.