Lawrence / Kudyba / Klimberg | Data Mining Methods and Applications | Buch | 978-0-8493-8522-3 | www2.sack.de

Buch, Englisch, 332 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 612 g

Lawrence / Kudyba / Klimberg

Data Mining Methods and Applications


1. Auflage 2008
ISBN: 978-0-8493-8522-3
Verlag: Taylor & Francis Ltd

Buch, Englisch, 332 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 612 g

ISBN: 978-0-8493-8522-3
Verlag: Taylor & Francis Ltd


With today’s information explosion, many organizations are now able to access a wealth of valuable data. Unfortunately, most of these organizations find they are ill-equipped to organize this information, let alone put it to work for them.

Gain a Competitive Advantage

- Employ data mining in research and forecasting

- Build models with data management tools and methodology optimization

- Gain sophisticated breakdowns and complex analysis through multivariate, evolutionary, and neural net methods

- Learn how to classify data and maintain quality

Transform Data into Business Acumen

Data Mining Methods and Applications supplies organizations with the data management tools that will allow them to harness the critical facts and figures needed to improve their bottom line. Drawing from finance, marketing, economics, science, and healthcare, this forward thinking volume:

- Demonstrates how the transformation of data into business intelligence is an essential aspect of strategic decision-making

- Emphasizes the use of data mining concepts in real-world scenarios with large database components

- Focuses on data mining and forecasting methods in conducting market research

Lawrence / Kudyba / Klimberg Data Mining Methods and Applications jetzt bestellen!

Zielgruppe


Undergraduate

Weitere Infos & Material


TECHNIQUES OF DATA MINING

An Approach to Analyzing and Modeling Systems

for Real-Time Decisions

Ensemble Strategies for Neural Network Classifiers

Neural Network Classification with Uneven Misclassification

Costs and Imbalanced Group Sizes

Data Cleansing with Independent Component Analysis

A Multiple Criteria Approach to Creating Good Teams over Time

APPLICATIONS OF DATA MINING

Data Mining Applications in Higher Education

Data Mining for Market Segmentation with Market Share Data

A Case Study Approach

An Enhancement of the Pocket Algorithm

with Ratche for Use in Data Mining Applications

Identification and Prediction of Chronic Conditions

for Health Plan Members Using Data Mining Techniques

Monitoring and Managing Data and Process Quality

Using Data Mining: Business Process Management

for the Purchasing and Accounts Payable Processes

Data Mining for Individual Consumer Models and Personalized

Retail Promotions

OTHER AREAS OF DATA MINING

Data Mining Common Definitions, Applications,

and Misunderstandings

Fuzzy Sets in Data Mining and Ordinal Classification

Developing an Associative Keyword Space of the Data Mining

Literature through Latent Semantic Analysis

A Classification Model for a Two-Class (New Product Purchase)

Discrimination Process using Multiple-Criteria

Linear Programming

Index


Kenneth D. Lawrence, Stephan Kudyba, Ronald K. Klimberg



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.