Buch, Englisch, 398 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g
ISBN: 978-3-642-07604-6
Verlag: Springer
This book will become a valuable source of reference for R&D professionals active in relational data mining. Students as well as IT professionals and ambitioned practitioners interested in learning about relational data mining will appreciate the book as a useful text and gentle introduction to this exciting new field.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Relationale Datenbanken
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Wirtschaftswissenschaften Wirtschaftswissenschaften Unternehmensgeschichte, Einzelne Branchen und Unternehmer
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Programmierung: Methoden und Allgemeines
Weitere Infos & Material
I. Introduction.- 1. Data Mining in a Nutshell.- 2. Knowledge Discovery in Databases: An Overview.- 3. An Introduction to Inductive Logic Programming.- 4. Inductive Logic Programming for Knowledge Discovery in Databases.- II. Techniques.- 5. Three Companions for Data Mining in First Order Logic.- 6. Inducing Classification and Regression Trees in First Order Logic.- 7. Relational Rule Induction with CProgol4.4: A Tutorial Introduction.- 8. Discovery of Relational Association Rules.- 9. Distance Based Approaches to Relational Learning and Clustering.- III. From Propositional to Relational Data Mining.- 10. How to Upgrade Propositional Learners to First Order Logic: A Case Study.- 11. Propositionalization Approaches to Relational Data Mining.- 12. Relational Learning and Boosting.- 13. Learning Probabilistic Relational Models.- IV. Applications and Web Resources.- 14. Relational Data Mining Applications: An Overview.- 15. Four Suggestions and a Rule Concerning the Application of ILP.- 16. Internet Resources on ILP for KDD.- Author Index.