Buch, Englisch, 176 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 465 g
ISBN: 978-3-030-77286-4
Verlag: Springer International Publishing
The volume aims to connect non-expert readers with thisimportant new cryptographic technology in an accessible and actionable way. Readers who have heard good things about homomorphic encryption but are not familiar with the details will find this book full of inspiration. Readers who have preconceived biases based on out-of-date knowledge will see the recent progress made by industrial and academic pioneers on optimizing and standardizing this technology. A clear picture of how homomorphic encryption works, how to use it to solve real-world problems, and how to efficiently strengthen privacy protection, will naturally become clear.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Technische Informatik Computersicherheit Datensicherheit, Datenschutz
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Kryptologie, Informationssicherheit
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Technische Wissenschaften Technik Allgemein Technische Zuverlässigkeit, Sicherheitstechnik
Weitere Infos & Material
Part 1: Introduction to Homomorphic Encryption (Dai).- Part 2: Homomorphic Encryption Security Standard: Homomorphic Encryption Security Standard (Laine).- Part 3: Applications of Homomorphic Encryption: Privacy-preserving Data Sharing and Computation Across Multiple Data Providers with Homomorphic Encryption (Troncoso-Pastoriza).- Secure and Confidential Rule Matching for Network Traffic Analysis (Jetchev).- Trusted Monitoring Service (TMS) (Scott).- Private Set Intersection and Compute (Kannepalli).- Part IV Applications of Homomorphic Encryption (at the Private AI Bootcamp): Private Outsourced Translation for Medical Data (Viand).- HappyKidz: Privacy Preserving Phone Usage Tracking (Hastings).- i-SEAL2: Identifying Spam EmAiL with SEAL (Froelicher).- PRIORIS: Enabling Secure Suicidal Ideation Detection from Speech using Homomorphic Machine Learning (Natarajan).- Gimme That Model!: A Trusted ML Model Trading Protocol (Lee).- HEalth: Privately Computing on Shared Healthcare Data (Hales).- Private Movie Recommendations for Children (Wagh S).- Privacy-Preserving Prescription Drug Management Using Homomorphic Encryption (Youmans).