Laumon / Waldspurger | Cohomology of Drinfeld Modular Varieties, Part 2, Automorphic Forms, Trace Formulas and Langlands Correspondence | Buch | 978-0-521-10990-1 | sack.de

Buch, Englisch, Band 56, 380 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 616 g

Reihe: Cambridge Studies in Advanced Mathematics

Laumon / Waldspurger

Cohomology of Drinfeld Modular Varieties, Part 2, Automorphic Forms, Trace Formulas and Langlands Correspondence


Erscheinungsjahr 2008
ISBN: 978-0-521-10990-1
Verlag: Cambridge University Press

Buch, Englisch, Band 56, 380 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 616 g

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-0-521-10990-1
Verlag: Cambridge University Press


Cohomology of Drinfeld Modular Varieties provides an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. This second volume is concerned with the Arthur-Selberg trace formula, and with the proof in some cases of the Rmamanujan-Petersson conjecture and the global Langlands conjecture for function fields. It is based on graduate courses taught by the author, who uses techniques which are extensions of those used to study Shimura varieties. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated. Several appendices on background material keep the work reasonably self-contained. It is the first book on this subject and will be of much interest to all researchers in algebraic number theory and representation theory.

Laumon / Waldspurger Cohomology of Drinfeld Modular Varieties, Part 2, Automorphic Forms, Trace Formulas and Langlands Correspondence jetzt bestellen!

Weitere Infos & Material


Preface; 9. Trace of fA on the discrete spectrum; 10. Non-invariant Arthur trace formula: the geometric side; 11. Non-invariant Arthur trace formula: the spectral side; 12. Cohomology with compact supports of Drinfeld modular varieties; 13. Intersection cohomology of Drinfeld modular varieties; Appendix D. Representations of unimodular, locally compact, totally discontinuous, separated topological groups: addendum; Appendix E. Reduction theory and strong approximation; Appendix F. Proof of lemma 10. 6. 4; Appendix G. The decomposition of L2G following the cuspidal data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.