Buch, Englisch, 277 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1310 g
Buch, Englisch, 277 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1310 g
Reihe: Stochastic Modelling and Applied Probability
ISBN: 978-0-387-98694-4
Verlag: Springer
The control model studied is sufficiently general to include virtually all the usual discrete-time stochastic control models that appear in applications to engineering, economics, mathematical population processes, operations research, and management science.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Stochastik Elementare Stochastik
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
7 Ergodicity and Poisson’s Equation.- 7.1 Introduction.- 7.2 Weighted norms and signed kernels.- 7.3 Recurrence concepts.- 7.4 Examples on w-geometric ergodicity.- 7.5 Poisson’s equation.- 8 Discounted Dynamic Programming with Weighted Norms.- 8.1 Introduction.- 8.2 The control model and control policies.- 8.3 The optimality equation.- 8.4 Further analysis of value iteration.- 8.5 The weakly continuous case.- 8.6 Examples.- 8.7 Further remarks.- 9 The Expected Total Cost Criterion.- 9.1 Introduction.- 9.2 Preliminaries.- 9.3 The expected total cost.- 9.4 Occupation measures.- 9.5 The optimality equation.- 9.6 The transient case.- 10 Undiscounted Cost Criteria.- 10.1 Introduction.- 10.2 Preliminaries.- 10.3 From AC-optimality to undiscounted criteria.- 10.4 Proof of Theorem 10.3.1.- 10.5 Proof of Theorem 10.3.6.- 10.6 Proof of Theorem 10.3.7.- 10.7 Proof of Theorem 10.3.10.- 10.8 Proof of Theorem 10.3.11.- 10.9 Examples.- 11 Sample Path Average Cost.- 11.1 Introduction.- 11.2 Preliminaries.- 11.3 The w-geometrically ergodic case.- 11.4 Strictly unbounded costs.- 11.5 Examples.- 12 The Linear Programming Approach.- 12.1 Introduction.- 12.2 Preliminaries.- 12.3 Linear programs for the AC problem.- 12.4 Approximating sequences and strong duality.- 12.5 Finite LP approximations.- 12.6 Proof of Theorems 12.5.3, 12.5.5, 12.5.7.- References.- Abbreviations.- Glossary of notation.




