Laska | Elliptic Curves over Number Fields with Prescribed Reduction Type | Buch | 978-3-528-08569-8 | sack.de

Buch, Deutsch, Band 4, 213 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 389 g

Reihe: Aspects of Mathematics

Laska

Elliptic Curves over Number Fields with Prescribed Reduction Type


1983
ISBN: 978-3-528-08569-8
Verlag: Vieweg+Teubner Verlag

Buch, Deutsch, Band 4, 213 Seiten, Format (B × H): 170 mm x 244 mm, Gewicht: 389 g

Reihe: Aspects of Mathematics

ISBN: 978-3-528-08569-8
Verlag: Vieweg+Teubner Verlag


Let K be an algebraic number field. The function attaching to each elliptic curve over K its conductor is constant on isoger. y classes of elliptic curves over K (for the definitions see chapter 1). ~Ioreover, for a given ideal a in OK the number of isogeny classes of elliptic curves over K with conductor a is finite. In these notes we deal with the following problem: How can one explicitly construct a set of representatives for the isogeny classes of elliptic curves over K with conductor a for a given ideal a in OK? The conductor of an elliptic curve over K is a numerical invariant which measures, in some sense, the badness of the reduction of the elliptic curve modulo the prime ideals in OK' It plays an important role in the famous Weil-Langlands conjecture on the connection between elliptic curves over K and congruence subgroups in 5L2(OK) • In case K ~ this connection can be stated as follows. For any ideal a = (N) in ~ let ro(N) be the congruence subgroup ro(N) { (: ~) E 5L2 (~) c E (N) } of 5L2 (~) and let 52 (fo (N' be the space of cusp forms of weight 2 for r 0 (N) Now Weil conjectured that there exists a bijection between the rational normalized eigenforms in 52(ro(N' for the Heckealgebra and the - 2 - Lsug~ny classes uf elliptic curves over ~ with conductor a = (N).

Laska Elliptic Curves over Number Fields with Prescribed Reduction Type jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Reduction of elliptic curves.- 2. Elliptic curves with good reduction outside a given set of prime ideals.- 3. The diophantine equation x3 ? y2 = r.- 4. Isogeny Classes.- 5. Review on explicit results.- References.- Index of special symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.