E-Book, Englisch, Band 83, 321 Seiten, eBook
Larochelle / McCarthy Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics
1. Auflage 2020
ISBN: 978-3-030-43929-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 83, 321 Seiten, eBook
Reihe: Mechanisms and Machine Science
ISBN: 978-3-030-43929-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;OrigamiBoat: An Application of Thick Rigid Flat-Folding Origami to Portable Watercraft;11
3.1;Abstract;11
3.2;1 Introduction;11
3.3;2 Design Approach;12
3.4;3 Results;14
3.5;4 Prototyping;16
3.6;5 Discussion;18
3.7;6 Conclusions;18
3.8;References;19
4;Analysis and Synthesis of Planar Cam Mechanisms Using Working Model 2D;20
4.1;Abstract;20
4.2;1 Introduction;20
4.3;2 Cam Follower Kinematic Analysis;21
4.4;3 Generation of Disk Cams with Cylindrical and Flat-Faced Followers;21
4.5;4 Generation of Cam Profiles with Concave Follower;26
4.6;5 Conclusions;28
4.7;Acknowledgements;28
4.8;References;28
5;Cam Profiles Generation as Follower Envelopes with MATLAB Programs;30
5.1;Abstract;30
5.2;1 Introduction;30
5.3;2 Translating Follower;31
5.4;3 Oscillating Follower;33
5.5;4 Wedge Cam Profile Generation;35
5.6;5 Conclusions;36
5.7;Appendix 1;36
5.8;References;40
6;Cylinder Deactivation and Propulsion Electrification;41
6.1;Abstract;41
6.2;1 Introduction;41
6.3;2 Prior Work;42
6.4;3 Cylinder Deactivation Mechanism;43
6.5;4 Modeling and Simulation Results;44
6.6;5 Conclusion;48
6.7;Acknowledgements;49
6.8;References;49
7;Design of a Sealed Wave Gear;51
7.1;Abstract;51
7.2;1 Introduction;51
7.3;2 Wave Gear Application;52
7.4;3 Design Algorithm Developed at the Bauman Moscow State Technical University;53
7.4.1;3.1 General Schemes of Wave Gear Mechanism;53
7.4.2;3.2 Sealed Wave Gear Mechanism;54
7.4.3;3.3 Details of Design Algorithm;56
7.5;4 Conclusions;60
7.6;References;61
8;Design, Development, and Testing of an Autonomous Multirotor for Personal Transportation;63
8.1;Abstract;63
8.2;1 Introduction;63
8.3;2 Mechanical Subsystem;65
8.3.1;2.1 Overall System Requirements;65
8.3.2;2.2 Motor Selection and Frame Configuration;66
8.3.3;2.3 Structural Components and Stress Analysis;67
8.3.4;2.4 Hummingbird Structure;69
8.4;3 Electrical Subsystem Design;70
8.4.1;3.1 Power and Energy Requirements;70
8.4.2;3.2 Battery Subsystem Design;70
8.4.3;3.3 Electronic Speed Controller Selection;73
8.5;4 Control System;73
8.5.1;4.1 Flight Controller;74
8.5.2;4.2 User Interface;74
8.6;5 Systems Assembly and Preliminary Thrust/Flight Testing;75
8.6.1;5.1 Hummingbird Assembly;75
8.6.2;5.2 Albatross Assembly;75
8.7;6 Planned Flight-Test Campaign;76
8.8;7 Conclusion;76
8.9;Acknowledgement;77
8.10;References;77
9;Forward Kinematics and Singularities of a 3-(rR)PS Metamorphic Parallel Mechanism;78
9.1;1 Introduction;78
9.2;2 Geometric Constraints of Mechanism;79
9.3;3 Derivation of Forward Kinematics;81
9.3.1;3.1 Forward Kinematics with Equal Lengths;82
9.4;4 Singularity Analysis;82
9.5;5 Conclusions;85
9.6;References;86
10;Autonomous Mobility Improvements of Hybrid Electric 4 × 4 with Controllable Power Transmitting Unit;88
10.1;Abstract;88
10.2;1 Introduction;88
10.3;2 Vehicle Dynamics for Mobility Analysis;89
10.3.1;2.1 Hybrid Electric Power Transmitting Unit for Mobility Optimization;92
10.4;3 Indices for Mobility Evaluation;93
10.4.1;3.1 Wheel Mobility Index;93
10.4.2;3.2 Velocity-Based Index;94
10.5;4 Computational Mobility Study;95
10.6;5 Conclusion;100
10.7;Acknowledgments;101
10.8;References;101
11;Towards Relating Grasping Posture and Fingers-Object Curvature in the Vicinity of a Contact Location;102
11.1;1 Introduction;102
11.1.1;1.1 Finger-Object Relative Curvature Within a Contact and Geometrical Models;103
11.2;2 Kinematic Joint Rotation Configuration Model;103
11.3;3 Summary of Circle Configuration Theorem;105
11.4;4 Fingertip Grasping Circle Configuration Formulation;107
11.5;5 Case Study;109
11.5.1;5.1 Grasping an Object with a Circular Cross-Section;110
11.5.2;5.2 Grasping an Object with Different Curvature Within the Contact;112
11.6;6 Conclusions;113
11.7;References;114
12;Steady-State Response of a Dual-Rotor Wind Turbine with Counter-Rotating Electric Generator and Planetary Gear Increaser;116
12.1;Abstract;116
12.2;1 Introduction;116
12.3;2 Problem Formulation;117
12.4;3 Dual-Rotor Wind Turbine Example;118
12.4.1;3.1 Kinematic and Static Equilibrium Equations of the Planetary Gear Set;120
12.4.2;3.2 Mechanical Connections Modeling;121
12.4.3;3.3 Wind Rotor and Electric Generator Characteristics;122
12.4.4;3.4 Steady-State Operating Point;122
12.5;4 Numerical Results and Discussions;123
12.6;5 Conclusions;124
12.7;References;125
13;Use of Flywheel Energy Storage in Mobile Robots;126
13.1;Abstract;126
13.2;1 Introduction;126
13.2.1;1.1 Scope and Special Characteristics of Mobile Robots;126
13.2.2;1.2 Energy Recovery Devices;127
13.3;2 Aim and Main Objectives;127
13.4;3 Flywheels;127
13.4.1;3.1 A Brief History of FES;127
13.4.2;3.2 Scope of Flywheel Energy Storage;129
13.4.3;3.3 Electric Battery;129
13.5;4 Flywheel Energy Storage;129
13.5.1;4.1 Modern Technology;129
13.5.2;4.2 Flywheel Energy Storage in Mobile Robots;129
13.5.3;4.3 Design of FES;131
13.5.4;4.4 Experimental Studies at Bauman Moscow State Technical University;132
13.6;5 Conclusions;135
13.7;References;135
14;Twisting String Actuation with Noncircular Wrapping Rods;136
14.1;1 Introduction;136
14.2;2 Mathematical Model;138
14.3;3 Test Bench;141
14.4;4 Experiments;143
14.5;5 Conclusion;145
14.6;References;145
15;A Wearable Joint Sensing Device Based on the Inverted Slider Crank;147
15.1;1 Introduction;147
15.2;2 Kinematics of Conductive Fabric and Human Motion;149
15.2.1;2.1 Range of Motion of Conductive Fabric;149
15.2.2;2.2 Range of Motion in the Joint;149
15.3;3 Kinematic Synthesis of Human Joint as Constrained RPR Chain;151
15.3.1;3.1 Kinematics of the RPR Chain;152
15.3.2;3.2 The Design Equations;153
15.3.3;3.3 Example Synthesis of an Elbow Joint;154
15.4;4 Results and Discussion;155
15.5;5 Conclusion;157
15.6;References;157
16;Using Cyclic Quadrilaterals to Design Cylindrical Developable Mechanisms;159
16.1;1 Introduction;159
16.1.1;1.1 Cyclic Quadrilaterals;160
16.1.2;1.2 Developable Mechanisms;160
16.1.3;1.3 Grashof Condition;161
16.2;2 Cyclic Quadrilaterals and Four-Bar Cylindrical Developable Mechanisms;162
16.2.1;2.1 Special Case: Folding Mechanism;163
16.2.2;2.2 Generalized Equation for the Radius of the Circumcircle;164
16.3;3 Intramobility and Extramobility with Cyclic Quadrilaterals;165
16.3.1;3.1 Special Conditions;166
16.4;4 Discussion and Conclusion;168
16.5;References;169
17;Optimization and Design of a Gripper Mechanism for Autonomous Unmanned Aerial Vehicle Perching;170
17.1;1 Introduction;170
17.2;2 Linkage Design and Optimization;172
17.2.1;2.1 Finger Optimization;173
17.2.2;2.2 Actuation Optimization;175
17.3;3 Prototype Design;176
17.4;4 Prototype Testing;177
17.4.1;4.1 3D Printed Prototype;177
17.4.2;4.2 Final Prototype;178
17.5;5 Conclusions;180
17.6;References;181
18;Computation of the Developable Form of a Planar Four-Bar Linkage;182
18.1;1 Introduction;182
18.2;2 Literature Review;183
18.3;3 The Cyclic Configuration of a Four-Bar Linkage;183
18.4;4 Example Calculation;185
18.5;5 Conclusion;187
18.6;References;188
19;Analysis of Soft Mechanisms Using a Homogenized Strain Induced Model;189
19.1;1 Introduction;189
19.2;2 Homogenized Strain Induced Model (HSIM);191
19.2.1;2.1 FRPAM Deformation: Morphology and Analysis;191
19.2.2;2.2 Model Parameters;193
19.2.3;2.3 Data Collection;193
19.2.4;2.4 Optimization Framework;194
19.2.5;2.5 Parametric Variation and Error Analysis;196
19.3;3 Experimental Validation;196
19.3.1;3.1 Pennate-Inspired Architectures;196
19.3.2;3.2 Testing and Results;198
19.4;4 HSIM as an Ideation Tool;199
19.5;5 Conclusion and Future Work;203
19.6;References;204
20;Mobile Fiducial-Based Collaborative Localization and Mapping (CLAM);206
20.1;1 Introduction;206
20.2;2 Collaborative Localization and Mapping (CLAM);208
20.2.1;2.1 Notation, Definitions, and Mathematical Formalism;208
20.3;3 The Fiducial System and Exchangeable Range Sensing;211
20.4;4 Experimental Results;212
20.5;5 Discussion and Future Directions;213
20.6;References;214
21;A GPU Homotopy Path Tracker and End Game for Mechanism Synthesis;216
21.1;1 Introduction;216
21.2;2 Constraints of a GPU;217
21.3;3 Homotopy Continuation and Path Tracking;217
21.3.1;3.1 GPU Implementation;219
21.4;4 Demonstration;221
21.5;5 Conclusion;224
21.6;References;224
22;Validation of Vision-Based State Estimation for Localization of Agents and Swarm Formation;226
22.1;1 Introduction;226
22.2;2 Background and Objectives;228
22.3;3 Vision-Based Pose Estimation Method;228
22.4;4 Testing and Validation Results;230
22.4.1;4.1 Distance Estimation;230
22.4.2;4.2 Swarm State Estimation;232
22.5;5 Discussion;233
22.6;References;234
23;Unpacking the Mathematics of Modeling Origami Folding Transformations with Quaternions;235
23.1;1 Introduction;235
23.2;2 Preliminaries;236
23.2.1;2.1 The Transformation [v,](u);236
23.2.2;2.2 The Transformation [P,v,](u);237
23.2.3;2.3 The Transformation [(ea,),(eb,)];238
23.3;3 Modeling the Motion;238
23.3.1;3.1 Single Vertex Pattern Modeling;239
23.3.2;3.2 Dual Quaternion Modeling;243
23.3.3;3.3 Key Theorem;245
23.4;4 Summary;248
23.5;5 Conclusion;249
23.6;Appendix;249
23.7;References;250
24;Algebraic Insight on the Concomitant Motion of 3RPS and 3PRS PKMs;252
24.1;1 Introduction;252
24.2;2 Concomitant Motion;253
24.2.1;2.1 Basics of Concomitant Motion;253
24.3;3 Velocity Level Constraint Relation to Detect Concomitant Motion;254
24.3.1;3.1 Mechanism Description;254
24.3.2;3.2 Leg and Manipulator Jacobian;255
24.3.3;3.3 Detection of Concomitant Motion;256
24.3.4;3.4 Identification of Concomitant Motion;258
24.4;4 Relation of the Parasitic Motion and Independent Motion;258
24.5;5 Conclusion;262
24.6;References;262
25;A Unified Representation for Mapping Robot Workspace and Performance with Applications for Parallel Mechanisms;263
25.1;Abstract;263
25.2;1 Introduction;263
25.3;2 A Unified Representation;264
25.3.1;2.1 Concept of Dimensionally Unified Representation;264
25.3.2;2.2 Mathematical Expression of Unified Dimension Representation Method;266
25.3.3;2.3 New Workspace Performance Index;267
25.3.4;2.4 Schematic Diagrams of Unified Dimension Workspace and Performance Map;267
25.4;3 Application of Unified Dimension Representation Method;269
25.4.1;3.1 Brief Introduction of 3RPS Parallel Mechanism;269
25.4.2;3.2 Unified Dimension Workspace and Performance Map;270
25.4.3;3.3 Parameter Optimization with New Performance Indexes;272
25.4.3.1;3.3.1 Parameter Optimization Among Overall Workspace;272
25.4.3.2;3.3.2 Parameter Optimization in Task Workspace;273
25.4.4;3.4 Task-Oriented Parameter Determination Based on New Performance Indexes;276
25.5;4 Conclusion;278
25.6;Acknowledgements;279
25.7;References;279
26;Human Factors to Develop a Safety Guard Model in Human-Robot Interaction;281
26.1;1 Introduction;281
26.2;2 Methodology;283
26.2.1;2.1 Experimental Setup;284
26.3;3 Background on Surface EMG and Fatigue Analysis;285
26.3.1;3.1 Fatigue Analysis;286
26.4;4 Kinematics and Dynamics of the UR5 Robot;288
26.5;5 Implementation Strategy;290
26.6;6 Conclusion;294
26.7;References;294
27;Singularity Design for RRSS Mechanisms;297
27.1;1 Introduction;297
27.2;2 The RRSS Mechanism;298
27.3;3 Singularity Design Equations for the RRSS Mechanism;299
27.4;4 Solution Procedure and a Numerical Example;302
27.5;5 Conclusion;307
27.6;References;307
28;Robotic Inspection Crawler for Small Diameter Complex Piping;308
28.1;1 Introduction;308
28.2;2 Requirements of Inspection System;309
28.3;3 Background of Design Concepts;310
28.4;4 Crawler Architecture;311
28.4.1;4.1 Gripping Mechanism;312
28.4.2;4.2 Locomotion Method;312
28.4.3;4.3 Steering System;312
28.4.4;4.4 Sensorless Locomotion Control;313
28.5;5 Crawler Design Dimensional Optimization;313
28.5.1;5.1 Dimensional Restrictions;313
28.5.2;5.2 Static Optimization;314
28.5.3;5.3 Dynamic Optimizations;315
28.6;6 Crawler Testing and Validation;316
28.7;7 Conclusion;317
28.8;References;318
29;Author Index;320