Larochelle / McCarthy | Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics | E-Book | sack.de
E-Book

E-Book, Englisch, Band 83, 321 Seiten, eBook

Reihe: Mechanisms and Machine Science

Larochelle / McCarthy Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics


1. Auflage 2020
ISBN: 978-3-030-43929-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 83, 321 Seiten, eBook

Reihe: Mechanisms and Machine Science

ISBN: 978-3-030-43929-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume gathers the latest fundamental research contributions, innovations, and applications in the field of design and analysis of complex robotic mechanical systems, machines, and mechanisms, as presented by leading international researchers at the 1st USCToMM Symposium on Mechanical Systems and Robotics (USCToMM MSR 2020), held in Rapid City, South Dakota, USA on May 14-16, 2020. It covers highly diverse topics, including soft, wearable and origami robotic systems; applications to walking, flying, climbing, underground, swimming and space systems; human rehabilitation and performance augmentation; design and analysis of mechanisms and machines; human-robot collaborative systems; service robotics; mechanical systems and robotics education; and the commercialization of mechanical systems and robotics. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting and impactful research results that will inspire novelresearch directions and foster multidisciplinary research collaborations among researchers from around the globe.
Larochelle / McCarthy Proceedings of the 2020 USCToMM Symposium on Mechanical Systems and Robotics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;OrigamiBoat: An Application of Thick Rigid Flat-Folding Origami to Portable Watercraft;11
3.1;Abstract;11
3.2;1 Introduction;11
3.3;2 Design Approach;12
3.4;3 Results;14
3.5;4 Prototyping;16
3.6;5 Discussion;18
3.7;6 Conclusions;18
3.8;References;19
4;Analysis and Synthesis of Planar Cam Mechanisms Using Working Model 2D;20
4.1;Abstract;20
4.2;1 Introduction;20
4.3;2 Cam Follower Kinematic Analysis;21
4.4;3 Generation of Disk Cams with Cylindrical and Flat-Faced Followers;21
4.5;4 Generation of Cam Profiles with Concave Follower;26
4.6;5 Conclusions;28
4.7;Acknowledgements;28
4.8;References;28
5;Cam Profiles Generation as Follower Envelopes with MATLAB Programs;30
5.1;Abstract;30
5.2;1 Introduction;30
5.3;2 Translating Follower;31
5.4;3 Oscillating Follower;33
5.5;4 Wedge Cam Profile Generation;35
5.6;5 Conclusions;36
5.7;Appendix 1;36
5.8;References;40
6;Cylinder Deactivation and Propulsion Electrification;41
6.1;Abstract;41
6.2;1 Introduction;41
6.3;2 Prior Work;42
6.4;3 Cylinder Deactivation Mechanism;43
6.5;4 Modeling and Simulation Results;44
6.6;5 Conclusion;48
6.7;Acknowledgements;49
6.8;References;49
7;Design of a Sealed Wave Gear;51
7.1;Abstract;51
7.2;1 Introduction;51
7.3;2 Wave Gear Application;52
7.4;3 Design Algorithm Developed at the Bauman Moscow State Technical University;53
7.4.1;3.1 General Schemes of Wave Gear Mechanism;53
7.4.2;3.2 Sealed Wave Gear Mechanism;54
7.4.3;3.3 Details of Design Algorithm;56
7.5;4 Conclusions;60
7.6;References;61
8;Design, Development, and Testing of an Autonomous Multirotor for Personal Transportation;63
8.1;Abstract;63
8.2;1 Introduction;63
8.3;2 Mechanical Subsystem;65
8.3.1;2.1 Overall System Requirements;65
8.3.2;2.2 Motor Selection and Frame Configuration;66
8.3.3;2.3 Structural Components and Stress Analysis;67
8.3.4;2.4 Hummingbird Structure;69
8.4;3 Electrical Subsystem Design;70
8.4.1;3.1 Power and Energy Requirements;70
8.4.2;3.2 Battery Subsystem Design;70
8.4.3;3.3 Electronic Speed Controller Selection;73
8.5;4 Control System;73
8.5.1;4.1 Flight Controller;74
8.5.2;4.2 User Interface;74
8.6;5 Systems Assembly and Preliminary Thrust/Flight Testing;75
8.6.1;5.1 Hummingbird Assembly;75
8.6.2;5.2 Albatross Assembly;75
8.7;6 Planned Flight-Test Campaign;76
8.8;7 Conclusion;76
8.9;Acknowledgement;77
8.10;References;77
9;Forward Kinematics and Singularities of a 3-(rR)PS Metamorphic Parallel Mechanism;78
9.1;1 Introduction;78
9.2;2 Geometric Constraints of Mechanism;79
9.3;3 Derivation of Forward Kinematics;81
9.3.1;3.1 Forward Kinematics with Equal Lengths;82
9.4;4 Singularity Analysis;82
9.5;5 Conclusions;85
9.6;References;86
10;Autonomous Mobility Improvements of Hybrid Electric 4 × 4 with Controllable Power Transmitting Unit;88
10.1;Abstract;88
10.2;1 Introduction;88
10.3;2 Vehicle Dynamics for Mobility Analysis;89
10.3.1;2.1 Hybrid Electric Power Transmitting Unit for Mobility Optimization;92
10.4;3 Indices for Mobility Evaluation;93
10.4.1;3.1 Wheel Mobility Index;93
10.4.2;3.2 Velocity-Based Index;94
10.5;4 Computational Mobility Study;95
10.6;5 Conclusion;100
10.7;Acknowledgments;101
10.8;References;101
11;Towards Relating Grasping Posture and Fingers-Object Curvature in the Vicinity of a Contact Location;102
11.1;1 Introduction;102
11.1.1;1.1 Finger-Object Relative Curvature Within a Contact and Geometrical Models;103
11.2;2 Kinematic Joint Rotation Configuration Model;103
11.3;3 Summary of Circle Configuration Theorem;105
11.4;4 Fingertip Grasping Circle Configuration Formulation;107
11.5;5 Case Study;109
11.5.1;5.1 Grasping an Object with a Circular Cross-Section;110
11.5.2;5.2 Grasping an Object with Different Curvature Within the Contact;112
11.6;6 Conclusions;113
11.7;References;114
12;Steady-State Response of a Dual-Rotor Wind Turbine with Counter-Rotating Electric Generator and Planetary Gear Increaser;116
12.1;Abstract;116
12.2;1 Introduction;116
12.3;2 Problem Formulation;117
12.4;3 Dual-Rotor Wind Turbine Example;118
12.4.1;3.1 Kinematic and Static Equilibrium Equations of the Planetary Gear Set;120
12.4.2;3.2 Mechanical Connections Modeling;121
12.4.3;3.3 Wind Rotor and Electric Generator Characteristics;122
12.4.4;3.4 Steady-State Operating Point;122
12.5;4 Numerical Results and Discussions;123
12.6;5 Conclusions;124
12.7;References;125
13;Use of Flywheel Energy Storage in Mobile Robots;126
13.1;Abstract;126
13.2;1 Introduction;126
13.2.1;1.1 Scope and Special Characteristics of Mobile Robots;126
13.2.2;1.2 Energy Recovery Devices;127
13.3;2 Aim and Main Objectives;127
13.4;3 Flywheels;127
13.4.1;3.1 A Brief History of FES;127
13.4.2;3.2 Scope of Flywheel Energy Storage;129
13.4.3;3.3 Electric Battery;129
13.5;4 Flywheel Energy Storage;129
13.5.1;4.1 Modern Technology;129
13.5.2;4.2 Flywheel Energy Storage in Mobile Robots;129
13.5.3;4.3 Design of FES;131
13.5.4;4.4 Experimental Studies at Bauman Moscow State Technical University;132
13.6;5 Conclusions;135
13.7;References;135
14;Twisting String Actuation with Noncircular Wrapping Rods;136
14.1;1 Introduction;136
14.2;2 Mathematical Model;138
14.3;3 Test Bench;141
14.4;4 Experiments;143
14.5;5 Conclusion;145
14.6;References;145
15;A Wearable Joint Sensing Device Based on the Inverted Slider Crank;147
15.1;1 Introduction;147
15.2;2 Kinematics of Conductive Fabric and Human Motion;149
15.2.1;2.1 Range of Motion of Conductive Fabric;149
15.2.2;2.2 Range of Motion in the Joint;149
15.3;3 Kinematic Synthesis of Human Joint as Constrained RPR Chain;151
15.3.1;3.1 Kinematics of the RPR Chain;152
15.3.2;3.2 The Design Equations;153
15.3.3;3.3 Example Synthesis of an Elbow Joint;154
15.4;4 Results and Discussion;155
15.5;5 Conclusion;157
15.6;References;157
16;Using Cyclic Quadrilaterals to Design Cylindrical Developable Mechanisms;159
16.1;1 Introduction;159
16.1.1;1.1 Cyclic Quadrilaterals;160
16.1.2;1.2 Developable Mechanisms;160
16.1.3;1.3 Grashof Condition;161
16.2;2 Cyclic Quadrilaterals and Four-Bar Cylindrical Developable Mechanisms;162
16.2.1;2.1 Special Case: Folding Mechanism;163
16.2.2;2.2 Generalized Equation for the Radius of the Circumcircle;164
16.3;3 Intramobility and Extramobility with Cyclic Quadrilaterals;165
16.3.1;3.1 Special Conditions;166
16.4;4 Discussion and Conclusion;168
16.5;References;169
17;Optimization and Design of a Gripper Mechanism for Autonomous Unmanned Aerial Vehicle Perching;170
17.1;1 Introduction;170
17.2;2 Linkage Design and Optimization;172
17.2.1;2.1 Finger Optimization;173
17.2.2;2.2 Actuation Optimization;175
17.3;3 Prototype Design;176
17.4;4 Prototype Testing;177
17.4.1;4.1 3D Printed Prototype;177
17.4.2;4.2 Final Prototype;178
17.5;5 Conclusions;180
17.6;References;181
18;Computation of the Developable Form of a Planar Four-Bar Linkage;182
18.1;1 Introduction;182
18.2;2 Literature Review;183
18.3;3 The Cyclic Configuration of a Four-Bar Linkage;183
18.4;4 Example Calculation;185
18.5;5 Conclusion;187
18.6;References;188
19;Analysis of Soft Mechanisms Using a Homogenized Strain Induced Model;189
19.1;1 Introduction;189
19.2;2 Homogenized Strain Induced Model (HSIM);191
19.2.1;2.1 FRPAM Deformation: Morphology and Analysis;191
19.2.2;2.2 Model Parameters;193
19.2.3;2.3 Data Collection;193
19.2.4;2.4 Optimization Framework;194
19.2.5;2.5 Parametric Variation and Error Analysis;196
19.3;3 Experimental Validation;196
19.3.1;3.1 Pennate-Inspired Architectures;196
19.3.2;3.2 Testing and Results;198
19.4;4 HSIM as an Ideation Tool;199
19.5;5 Conclusion and Future Work;203
19.6;References;204
20;Mobile Fiducial-Based Collaborative Localization and Mapping (CLAM);206
20.1;1 Introduction;206
20.2;2 Collaborative Localization and Mapping (CLAM);208
20.2.1;2.1 Notation, Definitions, and Mathematical Formalism;208
20.3;3 The Fiducial System and Exchangeable Range Sensing;211
20.4;4 Experimental Results;212
20.5;5 Discussion and Future Directions;213
20.6;References;214
21;A GPU Homotopy Path Tracker and End Game for Mechanism Synthesis;216
21.1;1 Introduction;216
21.2;2 Constraints of a GPU;217
21.3;3 Homotopy Continuation and Path Tracking;217
21.3.1;3.1 GPU Implementation;219
21.4;4 Demonstration;221
21.5;5 Conclusion;224
21.6;References;224
22;Validation of Vision-Based State Estimation for Localization of Agents and Swarm Formation;226
22.1;1 Introduction;226
22.2;2 Background and Objectives;228
22.3;3 Vision-Based Pose Estimation Method;228
22.4;4 Testing and Validation Results;230
22.4.1;4.1 Distance Estimation;230
22.4.2;4.2 Swarm State Estimation;232
22.5;5 Discussion;233
22.6;References;234
23;Unpacking the Mathematics of Modeling Origami Folding Transformations with Quaternions;235
23.1;1 Introduction;235
23.2;2 Preliminaries;236
23.2.1;2.1 The Transformation [v,](u);236
23.2.2;2.2 The Transformation [P,v,](u);237
23.2.3;2.3 The Transformation [(ea,),(eb,)];238
23.3;3 Modeling the Motion;238
23.3.1;3.1 Single Vertex Pattern Modeling;239
23.3.2;3.2 Dual Quaternion Modeling;243
23.3.3;3.3 Key Theorem;245
23.4;4 Summary;248
23.5;5 Conclusion;249
23.6;Appendix;249
23.7;References;250
24;Algebraic Insight on the Concomitant Motion of 3RPS and 3PRS PKMs;252
24.1;1 Introduction;252
24.2;2 Concomitant Motion;253
24.2.1;2.1 Basics of Concomitant Motion;253
24.3;3 Velocity Level Constraint Relation to Detect Concomitant Motion;254
24.3.1;3.1 Mechanism Description;254
24.3.2;3.2 Leg and Manipulator Jacobian;255
24.3.3;3.3 Detection of Concomitant Motion;256
24.3.4;3.4 Identification of Concomitant Motion;258
24.4;4 Relation of the Parasitic Motion and Independent Motion;258
24.5;5 Conclusion;262
24.6;References;262
25;A Unified Representation for Mapping Robot Workspace and Performance with Applications for Parallel Mechanisms;263
25.1;Abstract;263
25.2;1 Introduction;263
25.3;2 A Unified Representation;264
25.3.1;2.1 Concept of Dimensionally Unified Representation;264
25.3.2;2.2 Mathematical Expression of Unified Dimension Representation Method;266
25.3.3;2.3 New Workspace Performance Index;267
25.3.4;2.4 Schematic Diagrams of Unified Dimension Workspace and Performance Map;267
25.4;3 Application of Unified Dimension Representation Method;269
25.4.1;3.1 Brief Introduction of 3RPS Parallel Mechanism;269
25.4.2;3.2 Unified Dimension Workspace and Performance Map;270
25.4.3;3.3 Parameter Optimization with New Performance Indexes;272
25.4.3.1;3.3.1 Parameter Optimization Among Overall Workspace;272
25.4.3.2;3.3.2 Parameter Optimization in Task Workspace;273
25.4.4;3.4 Task-Oriented Parameter Determination Based on New Performance Indexes;276
25.5;4 Conclusion;278
25.6;Acknowledgements;279
25.7;References;279
26;Human Factors to Develop a Safety Guard Model in Human-Robot Interaction;281
26.1;1 Introduction;281
26.2;2 Methodology;283
26.2.1;2.1 Experimental Setup;284
26.3;3 Background on Surface EMG and Fatigue Analysis;285
26.3.1;3.1 Fatigue Analysis;286
26.4;4 Kinematics and Dynamics of the UR5 Robot;288
26.5;5 Implementation Strategy;290
26.6;6 Conclusion;294
26.7;References;294
27;Singularity Design for RRSS Mechanisms;297
27.1;1 Introduction;297
27.2;2 The RRSS Mechanism;298
27.3;3 Singularity Design Equations for the RRSS Mechanism;299
27.4;4 Solution Procedure and a Numerical Example;302
27.5;5 Conclusion;307
27.6;References;307
28;Robotic Inspection Crawler for Small Diameter Complex Piping;308
28.1;1 Introduction;308
28.2;2 Requirements of Inspection System;309
28.3;3 Background of Design Concepts;310
28.4;4 Crawler Architecture;311
28.4.1;4.1 Gripping Mechanism;312
28.4.2;4.2 Locomotion Method;312
28.4.3;4.3 Steering System;312
28.4.4;4.4 Sensorless Locomotion Control;313
28.5;5 Crawler Design Dimensional Optimization;313
28.5.1;5.1 Dimensional Restrictions;313
28.5.2;5.2 Static Optimization;314
28.5.3;5.3 Dynamic Optimizations;315
28.6;6 Crawler Testing and Validation;316
28.7;7 Conclusion;317
28.8;References;318
29;Author Index;320



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.