Laptev | Around the Research of Vladimir Maz'ya II | Buch | 978-1-4614-2548-9 | sack.de

Buch, Englisch, Band 12, 386 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g

Reihe: International Mathematical Series

Laptev

Around the Research of Vladimir Maz'ya II

Partial Differential Equations

Buch, Englisch, Band 12, 386 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g

Reihe: International Mathematical Series

ISBN: 978-1-4614-2548-9
Verlag: Springer US


Topics of this volume are close to scientific interests of Professor Maz'ya and use, directly or indirectly, the fundamental influential Maz'ya's works penetrating, in a sense, the theory of PDEs.

In particular, recent advantages in the study of semilinear elliptic equations, stationary Navier-Stokes equations, the Stokes system in convex polyhedra, periodic scattering problems, problems with perturbed boundary at a conic point, singular perturbations arising in elliptic shells and other important problems in mathematical physics are presented.

Laptev Around the Research of Vladimir Maz'ya II jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Large Solutions to Semilinear Elliptic Equations with Hardy Potential and Exponential Nonlinearity.- Stability Estimates for Resolvents, Eigenvalues, and Eigenfunctions of Elliptic Operators on Variable Domains.- Operator Pencil in a Domain with Concentrated Masses. A Scalar Analog of Linear Hydrodynamics.- Selfsimilar Perturbation near a Corner: Matching Versus Multiscale Expansions for a Model Problem.- Stationary Navier#x2013;Stokes Equation on Lipschitz Domains in Riemannian Manifolds with Nonvanishing Boundary Conditions.- On the Regularity of Nonlinear Subelliptic Equations.- Rigorous and Heuristic Treatment of Sensitive Singular Perturbations Arising in Elliptic Shells.- On the Existence of Positive Solutions of Semilinear Elliptic Inequalities on Riemannian Manifolds.- Recurrence Relations for Orthogonal Polynomials and Algebraicity of Solutions of the Dirichlet Problem.- On First Neumann Eigenvalue Bounds for Conformal Metrics.- Necessary Condition for the Regularity of a Boundary Point for Porous Medium Equations with Coefficients of Kato Class.- The Problem of Steady Flow over a Two-Dimensional Bottom Obstacle.- Well Posedness and Asymptotic Expansion of Solution of Stokes Equation Set in a Thin Cylindrical Elastic Tube.- On Solvability of Integral Equations for Harmonic Single Layer Potential on the Boundary of a Domain with Cusp.- H#x00F6;lder Estimates for Green#x2019;s Matrix of the Stokes System in Convex Polyhedra.- Boundary Integral Methods for Periodic Scattering Problems.- Boundary Coerciveness and the Neumann Problem for 4th Order Linear Partial Differential Operators.


Laptev, Ari
Ari Laptev
Imperial College London (UK) and
Royal Institute of Technology (Sweden)
Ari Laptev is a world-recognized specialist in Spectral Theory of
Differential Operators. He is the President of the European Mathematical
Society for the period 2007- 2010.

Ari Laptev
Imperial College London (UK) and
Royal Institute of Technology (Sweden)
Ari Laptev is a world-recognized specialist in Spectral Theory of
Differential Operators. He is the President of the European Mathematical
Society for the period 2007- 2010.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.