Lapan | Deep Reinforcement Learning | Buch | 978-3-7475-0036-1 | sack.de

Buch, Deutsch, 768 Seiten, Format (B × H): 171 mm x 238 mm, Gewicht: 1280 g

Reihe: mitp Professional

Lapan

Deep Reinforcement Learning

Das umfassende Praxis-Handbuch. Moderne Algorithmen für Chatbots, Robotik, diskrete Optimierung und Web-Automatisierung inkl. Multiagenten-Methoden
1. Auflage 2020
ISBN: 978-3-7475-0036-1
Verlag: MITP Verlags GmbH

Das umfassende Praxis-Handbuch. Moderne Algorithmen für Chatbots, Robotik, diskrete Optimierung und Web-Automatisierung inkl. Multiagenten-Methoden

Buch, Deutsch, 768 Seiten, Format (B × H): 171 mm x 238 mm, Gewicht: 1280 g

Reihe: mitp Professional

ISBN: 978-3-7475-0036-1
Verlag: MITP Verlags GmbH


Alle wichtigen Methoden und Algorithmen praxisnah erläutert mit Codebeispielen in PythonSelbstständig lernende Agenten programmieren für die Steuerung von Robotern, NLP in interaktiven Spielen, Chatbots und mehrDeep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen, moderne Explorationsverfahren u.v.m.Reinforcement Learning ist ein Teilgebiet des Machine Learnings. Hierbei werden selbstständig lernende Agenten programmiert, deren Lernvorgang ausschließlich durch ein Belohnungssystem und die Beobachtung der Umgebung gesteuert wird.In diesem umfassenden Praxis-Handbuch zeigt Ihnen Maxim Lapan, wie Sie diese zukunftsweisende Technologie in der Praxis einsetzen. Sie lernen, wie Sie passende RL-Methoden für Ihre Problemstellung auswählen und mithilfe von Deep-Learning-Methoden Agenten für verschiedene Aufgaben trainieren wie zum Beispiel für das Lösen eines Zauberwürfels, für Natural Language Processing in Microsofts TextWorld-Umgebung oder zur Realisierung moderner Chatbots.Alle Beispiele sind so gewählt, dass sie leicht verständlich sind und Sie diese auch ohne Zugang zu sehr großer Rechenleistung umsetzen können. Unter Einsatz von Python und der Bibliothek PyTorch ermöglicht Ihnen der Autor so einen einfachen und praktischen Einstieg in die Konzepte und Methoden des Reinforcement Learnings wie Deep Q-Networks, Wertiteration, Policy Gradients, Trust Region Policy Optimization (TRPO), genetische Algorithmen und viele mehr.Es werden grundlegende Kenntnisse in Machine Learning und Deep Learning sowie ein sicherer Umgang mit Python vorausgesetzt.Aus dem Inhalt:Implementierung komplexer Deep-Learning-Modelle mit RL in tiefen neuronalen NetzenErmitteln der passenden RL-Methoden für verschiedene Problemstellungen, darunter DQN, Advantage Actor Critic, PPO, TRPO, DDPG, D4PG und mehrBauen und Trainieren eines kostengünstigen Hardware-RobotersNLP in Microsofts TextWorld-Umgebung für interaktive SpieleDiskrete Optimierung für das Lösen von ZauberwürfelnTrainieren von Agenten für Vier Gewinnt mittels AlphaGo ZeroDie neuesten Deep-RL-Methoden für ChatbotsModerne Explorationsverfahren wie verrauschte Netze und Netz-Destillation
Lapan Deep Reinforcement Learning jetzt bestellen!

Zielgruppe


Entwickler und Programmierer für Deep Learning und Machine Learning, Studenten, Data Scientists


Autoren/Hrsg.


Weitere Infos & Material


Maxim Lapan ist Deep-Learning-Enthusiast und unabhängiger Forscher. Er hat langjährige Berufserfahrung mit Big Data und Machine Learning und beschäftigt sich derzeit insbesondere mit praktischen Anwendungen des Deep Learnings wie NLP und Deep Reinforcement Learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.