Lantz | Machine Learning with R | E-Book | sack.de
E-Book

E-Book, Englisch, 762 Seiten

Lantz Machine Learning with R

Learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data
4. Auflage 2023
ISBN: 978-1-80107-605-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection

Learn techniques for building and improving machine learning models, from data preparation to model tuning, evaluation, and working with big data

E-Book, Englisch, 762 Seiten

ISBN: 978-1-80107-605-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection



No detailed description available for "Machine Learning with R".

Lantz Machine Learning with R jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Table of Contents - Introducing Machine Learning
- Managing and Understanding Data
- Lazy Learning – Classification Using Nearest Neighbors
- Probabilistic Learning – Classification Using Naive Bayes
- Divide and Conquer – Classification Using Decision Trees and Rules
- Forecasting Numeric Data – Regression Methods
- Black-Box Methods – Neural Networks and Support Vector Machines
- Finding Patterns – Market Basket Analysis Using Association Rules
- Finding Groups of Data – Clustering with k-means
- Evaluating Model Performance
- Being Successful with Machine Learning
- Advanced Data Preparation
- Challenging Data – Too Much, Too Little, Too Complex
- Building Better Learners
- Making Use of Big Data


Lantz Brett:

Brett Lantz (DataSpelunking) has spent more than 10 years using innovative data methods to understand human behavior. A sociologist by training, Brett was first captivated by machine learning during research on a large database of teenagers' social network profiles. Brett is a DataCamp instructor and a frequent speaker at machine learning conferences and workshops around the world. He is known to geek out about data science applications for sports, autonomous vehicles, foreign language learning, and fashion, among many other subjects, and hopes to one day blog about these subjects at Data Spelunking, a website dedicated to sharing knowledge about the search for insight in data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.