E-Book, Englisch, Band 1, 279 Seiten, eBook
Reihe: Genetic Programming
Langdon Genetic Programming and Data Structures
Erscheinungsjahr 2012
ISBN: 978-1-4615-5731-9
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Genetic Programming + Data Structures = Automatic Programming!
E-Book, Englisch, Band 1, 279 Seiten, eBook
Reihe: Genetic Programming
ISBN: 978-1-4615-5731-9
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Introduction.- 1.1 What is Genetic Programming?.- 1.2 Motivation.- 1.3 Outline.- 2. Survey.- 2.1 Introduction.- 2.2 Genetic Algorithms.- 2.3 Genetic Programming.- 2.4 GP Research.- 2.5 GP Applications.- 2.6 Conclusions.- 3. Advanced Genetic Programming Techniques.- 3.1 Background.- 3.2 Tournament Selection.- 3.3 Steady State Populations.- 3.4 Indexed memory.- 3.5 Scalar Memory.- 3.6 Multi-tree programs.- 3.7 Directed Crossover.- 3.8 Demes.- 3.9 Pareto Optimality.- 3.10 Conclusions.- 4. Evolving a Stack.- 4.1 Problem Statement.- 4.2 Architecture.- 4.3 Choice of Primitives.- 4.4 Fitness Function.- 4.5 Parameters.- 4.6 Results.- 4.7 Summary.- 5. Evolving a Queue.- 5.1 Problem Statement.- 5.2 Architecture.- 5.3 Choice of Primitives.- 5.4 Fitness Functions.- 5.5 Parameters.- 5.6 Automatically Defined Functions.- 5.7 Evolved Solutions — Caterpillar.- 5.8 Evolved Programs — Shuffler.- 5.9 Circular Buffer — Given Modulus Increment.- 5.10 Circular Buffer — Evolving Modulus Increment.- 5.11 Discussion: Building Blocks and Introns.- 5.12 Summary.- 6. Evolving a List.- 6.1 Problem Statement.- 6.2 Architecture.- 6.3 Automatically Defined Functions.- 6.4 Choice of Primitives.- 6.5 Fitness Function.- 6.6 Directed Crossover.- 6.7 Parameters.- 6.8 Results.- 6.9 Software Maintenance.- 6.10 Discussion.- 6.11 Conclusions.- 7. Problems Solved Using Data Structures.- 7.1 Balanced Bracket Problem.- 7.2 Dyck Language.- 7.3 Evaluating Reverse Polish Expressions.- 7.4 Work by Others on Solving Problems with Memory.- 7.5 Summary.- 8. Evolution of GP Populations.- 8.1 Price’s Selection and Covariance Theorem.- 8.2 Fisher’s Fundamental Theorem of Natural Selection.- 8.3 Evolution of Stack Problem Populations.- 8.4 Loss of Variety.- 8.5 Measurements of GP Crossover’s Effects.- 8.6Discussion.- 8.7 Summary.- 9. Conclusions.- 9.1 Recommendations.- 9.2 Future work.- References.- Appendices.- A–Number of Fitness Evaluations Required.- B–Glossary.- C–Scheduling Planned Maintenance of the National Grid.- C.1 Introduction.- C.2 The Electricity Transmission Network in Great Britain.- C.3 The South Wales Region of the UK Electricity Network.- C.4 Approximating Replacement Generation Costs.- C.5 The Fitness Function.- C.6 The Chromosome.- C.7 Greedy Optimisers.- C.8 South Wales Problem without Contingencies.- C.9 South Wales and Genetic Programming.- C.10 South Wales Problem with Contingencies.- C.11 Conclusions.- C.12 Future Work.- C.13 Using QGAME.- D–Implementation.- D.1 GP-QUICK.- D.2 Coding Changes to GP-QUICK-2.1.- D.3 Default Parameters.- D.4 Network Running.- D.5 Reusing Ancestors Fitness Information.- D.6 Caches.- D.7 Compressing the Check Point File.- D.8 Benchmarks.- D.9 Code.