Landau / Airimi?oaie / Castellanos-Silva | Adaptive and Robust Active Vibration Control | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 405 Seiten, eBook

Reihe: Advances in Industrial Control

Landau / Airimi?oaie / Castellanos-Silva Adaptive and Robust Active Vibration Control

Methodology and Tests
1. Auflage 2017
ISBN: 978-3-319-41450-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Methodology and Tests

E-Book, Englisch, 405 Seiten, eBook

Reihe: Advances in Industrial Control

ISBN: 978-3-319-41450-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book approaches the design of active vibration control systems from the perspective of today’s ideas of computer control. It formulates the various design problems encountered in the active management of vibration as control problems and searches for the most appropriate tools to solve them. The experimental validation of the solutions proposed on relevant tests benches is also addressed. To promote the widespread acceptance of these techniques, the presentation eliminates unnecessary theoretical developments (which can be found elsewhere) and focuses on algorithms and their use. The solutions proposed cannot be fully understood and creatively exploited without a clear understanding of the basic concepts and methods, so these are considered in depth. The focus is on enhancing motivations, algorithm presentation and experimental evaluation. MATLABroutines, Simulink diagrams and bench-test data are available for download and encourage easy assimilation of the experimental and exemplary material.

Three major problems are addressed in the book:

  • active damping to improve the performance of passive absorbers;
  • adaptive feedback attenuation of single and multiple tonal vibrations; and
  • feedforward and feedback attenuation of broad band vibrations.

Adaptive and Robust Active Vibration Control will interest practising engineers and help them to acquire new concepts and techniques with good practical validation. It can be used as the basis for a course for graduate students in mechanical, mechatronics, industrial electronics, aerospace and naval engineering. Readers working in active noise control will also discover techniques with a high degree of cross-over potential for use in their field.

Landau / Airimi?oaie / Castellanos-Silva Adaptive and Robust Active Vibration Control jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1;Series Editors’ Foreword;7
2;Preface;9
2.1;Website;10
2.2;Expected Audience;11
2.3;About the Content;11
2.4;Pathways Through the Book;12
2.5;Acknowledgements;14
2.6;References[1] Constantinescu, A.: Commande robuste et adaptative d’une suspension active. Thèse de doctorat, Institut National Polytechnique de Grenoble (2001)[2] Alma, M.: Rejet adaptatif de perturbations en contrôle actif de vibrations. Ph.D. thesis, Université de Grenoble (2011)[3] Airimitoaie, T.B.: Robust design and tuning of active vibration control systems. Ph.D. thesis, University of Grenoble, France, and University “Politehnica” of Bucharest, Romania (2012)[4] Castellanos-Silva, A.: Compensation adaptative par feedback pour le contrôle actif de vibrations en présence d’incertitudes sur les paramétres du procédé. Ph.D. thesis, Université de Grenoble (2014)[5] Landau, I.D., Silva, A.C., Airimitoaie, T.B., Buche, G., Noé, M.: Benchmark on adaptive regulation—rejection of unknown/time-varying multiple narrow band disturbances. European Journal of Control 19(4), 237—252 (2013). http://dx.doi.org/10.1016/j.ejcon.2013.05.007#1;14
3;Contents;15
4;Acronyms;23
5;Part I Introduction to Adaptive and Robust Active Vibration Control;25
6;1 Introduction to Adaptive and Robust Active Vibration Control;26
6.1;1.1 Active Vibration Control: Why and How;26
6.2;1.2 A Conceptual Feedback Framework;32
6.3;1.3 Active Damping;34
6.4;1.4 The Robust Regulation Paradigm;34
6.5;1.5 The Adaptive Regulation Paradigm;35
6.6;1.6 Concluding Remarks;37
6.7;1.7 Notes and Reference;38
6.8;References;38
7;2 The Test Benches;41
7.1;2.1 An Active Hydraulic Suspension System Using Feedback Compensation;41
7.2;2.2 An Active Vibration Control System Using Feedback Compensation Through an Inertial Actuator;44
7.3;2.3 An Active Distributed Flexible Mechanical Structure ƒ;46
7.4;2.4 Concluding Remarks;49
7.5;2.5 Notes and References;50
7.6;References;50
8;Part II Techniques for Active Vibration Control;51
9;3 Active Vibration Control Systems---Model Representation;52
9.1;3.1 System Description;52
9.1.1;3.1.1 Continuous-Time Versus Discrete-Time Dynamical Models;52
9.1.2;3.1.2 Digital Control Systems;53
9.1.3;3.1.3 Discrete-Time System Models for Control;55
9.2;3.2 Concluding Remarks;58
9.3;3.3 Notes and References;58
9.4;References;58
10;4 Parameter Adaptation Algorithms;59
10.1;4.1 Introduction;59
10.2;4.2 Structure of the Adjustable Model;60
10.2.1;4.2.1 Case (a): Recursive Configuration for System Identification---Equation Error;60
10.2.2;4.2.2 Case (b): Adaptive Feedforward Compensation---Output Error;62
10.3;4.3 Basic Parameter Adaptation Algorithms;64
10.3.1;4.3.1 Basic Gradient Algorithm;64
10.3.2;4.3.2 Improved Gradient Algorithm;67
10.3.3;4.3.3 Recursive Least Squares Algorithm;72
10.3.4;4.3.4 Choice of the Adaptation Gain;77
10.3.5;4.3.5 An Example;81
10.4;4.4 Stability of Parameter Adaptation Algorithms;82
10.4.1;4.4.1 Equivalent Feedback Representation of the Adaptive Predictors;83
10.4.2;4.4.2 A General Structure and Stability of PAA;86
10.4.3;4.4.3 Output Error Algorithms---Stability Analysis;90
10.5;4.5 Parametric Convergence;92
10.5.1;4.5.1 The Problem;92
10.6;4.6 The LMS Family of Parameter Adaptation Algorithms;96
10.7;4.7 Concluding Remarks;97
10.8;4.8 Notes and References;98
10.9;References;98
11;5 Identification of the Active Vibration Control Systems---The Bases;100
11.1;5.1 Introduction;100
11.2;5.2 Input--Output Data Acquisition and Preprocessing;102
11.2.1;5.2.1 Input--Output Data Acquisition Under an Experimental Protocol;102
11.2.2;5.2.2 Pseudorandom Binary Sequences (PRBS);102
11.2.3;5.2.3 Data Preprocessing;104
11.3;5.3 Model Order Estimation from Data;105
11.4;5.4 Parameter Estimation Algorithms;107
11.4.1;5.4.1 Recursive Extended Least Squares (RELS);109
11.4.2;5.4.2 Output Error with Extended Prediction Model (XOLOE);111
11.5;5.5 Validation of the Identified Models;113
11.5.1;5.5.1 Whiteness Test;113
11.6;5.6 Concluding Remarks;115
11.7;5.7 Notes and References;116
11.8;References;116
12;6 Identification of the Test Benches in Open-Loop Operation;117
12.1;6.1 Identification of the Active Hydraulic Suspension in Open-Loop Operation;117
12.1.1;6.1.1 Identification of the Secondary Path;118
12.1.2;6.1.2 Identification of the Primary Path;123
12.2;6.2 Identification of the AVC System Using Feedback Compensation Through an Inertial Actuator;124
12.2.1;6.2.1 Identification of the Secondary Path;124
12.2.2;6.2.2 Identification of the Primary Path;130
12.3;6.3 Identification of the Active Distributed Flexible Mechanical Structure Using Feedforward--Feedback Compensation;131
12.4;6.4 Concluding Remarks;137
12.5;6.5 Notes and References;137
12.6;References;137
13;7 Digital Control Strategies for Active Vibration Control---The Bases;139
13.1;7.1 The Digital Controller;139
13.2;7.2 Pole Placement;141
13.2.1;7.2.1 Choice of HR and HS---Examples;142
13.2.2;7.2.2 Internal Model Principle (IMP);144
13.2.3;7.2.3 Youla--Ku?era Parametrization;145
13.2.4;7.2.4 Robustness Margins;147
13.2.5;7.2.5 Model Uncertainties and Robust Stability;150
13.2.6;7.2.6 Templates for the Sensitivity Functions;152
13.2.7;7.2.7 Properties of the Sensitivity Functions;152
13.2.8;7.2.8 Input Sensitivity Function;155
13.2.9;7.2.9 Shaping the Sensitivity Functions for Active Vibration Control;157
13.3;7.3 Real-Time Example: Narrow-Band Disturbance Attenuation on the Active Vibration Control System Using an Inertial Actuator;161
13.4;7.4 Pole Placement with Sensitivity Function Shaping by Convex Optimisation;164
13.5;7.5 Concluding Remarks;167
13.6;7.6 Notes and References;167
13.7;References;168
14;8 Identification in Closed-Loop Operation;170
14.1;8.1 Introduction;170
14.2;8.2 Closed-Loop Output Error Identification Methods;171
14.2.1;8.2.1 The Closed-Loop Output Error Algorithm;175
14.2.2;8.2.2 Filtered and Adaptive Filtered Closed-Loop Output Error Algorithms (F-CLOE, AF-CLOE);176
14.2.3;8.2.3 Extended Closed-Loop Output Error Algorithm (X-CLOE);177
14.2.4;8.2.4 Taking into Account Known Fixed Parts in the Model;178
14.2.5;8.2.5 Properties of the Estimated Model;179
14.2.6;8.2.6 Validation of Models Identified in Closed-Loop Operation;180
14.3;8.3 A Real-Time Example: Identification in Closed-Loop and Controller Redesign for the Active Control System Using an Inertial Actuator;182
14.4;8.4 Concluding Remarks;186
14.5;8.5 Notes and References;186
14.6;References;187
15;9 Reduction of the Controller Complexity;188
15.1;9.1 Introduction;188
15.2;9.2 Criteria for Direct Controller Reduction;190
15.3;9.3 Estimation of Reduced Order Controllers by Identification in Closed-Loop;192
15.3.1;9.3.1 Closed-Loop Input Matching (CLIM);192
15.3.2;9.3.2 Closed-Loop Output Matching (CLOM);195
15.3.3;9.3.3 Taking into Account the Fixed Parts of the Nominal Controller;195
15.4;9.4 Real-Time Example: Reduction of Controller Complexity;197
15.5;9.5 Concluding Remarks;200
15.6;9.6 Notes and References;201
15.7;References;201
16;Part III Active Damping;202
17;10 Active Damping;203
17.1;10.1 Introduction;203
17.2;10.2 Performance Specifications;204
17.3;10.3 Controller Design by Shaping the Sensitivity Functions Using ƒ;208
17.4;10.4 Identification in Closed-Loop of the Active Suspension ƒ;211
17.5;10.5 Redesign of the Controller Based on the Model Identified in Closed Loop;212
17.6;10.6 Controller Complexity Reduction;214
17.6.1;10.6.1 CLOM Algorithm with Simulated Data;216
17.6.2;10.6.2 Real-Time Performance Tests for Nominal and Reduced Order Controllers;218
17.7;10.7 Design of the Controller by Shaping the Sensitivity Function with Band-Stop Filters;219
17.8;10.8 Concluding Remarks;224
17.9;10.9 Notes and References;225
17.10;References;226
18;Part IV Feedback Attenuation of Narrow-Band Disturbances;227
19;11 Robust Controller Design for Feedback Attenuation of Narrow-Band Disturbances;228
19.1;11.1 Introduction;228
19.2;11.2 System Description;229
19.3;11.3 Robust Control Design;231
19.4;11.4 Experimental Results;234
19.4.1;11.4.1 Two Time-Varying Tonal Disturbances;235
19.4.2;11.4.2 Attenuation of Vibrational Interference;237
19.5;11.5 Concluding Remarks;238
19.6;11.6 Notes and References;238
19.7;References;239
20;12 Direct Adaptive Feedback Attenuation of Narrow-Band Disturbances;240
20.1;12.1 Introduction;240
20.2;12.2 Direct Adaptive Feedback Attenuation of Unknown and Time-Varying ƒ;241
20.2.1;12.2.1 Introduction;241
20.2.2;12.2.2 Direct Adaptive Regulation Using Youla--Ku?era Parametrization;245
20.2.3;12.2.3 Robustness Considerations;247
20.3;12.3 Performance Evaluation Indicators for Narrow-Band Disturbance Attenuation;248
20.4;12.4 Experimental Results: Adaptive Versus Robust;251
20.4.1;12.4.1 Central Controller for Youla--Ku?era Parametrization;251
20.4.2;12.4.2 Two Single-Mode Vibration Control;251
20.4.3;12.4.3 Vibrational Interference;254
20.5;12.5 Adaptive Attenuation of an Unknown Narrow-Band Disturbance on the Active Hydraulic Suspension;256
20.6;12.6 Adaptive Attenuation of an Unknown Narrow-Band Disturbance on the Active Vibration Control System Using an Inertial Actuator;259
20.6.1;12.6.1 Design of the Central Controller;260
20.6.2;12.6.2 Real-Time Results;262
20.7;12.7 Other Experimental Results;264
20.8;12.8 Concluding Remarks;264
20.9;12.9 Notes and References;265
20.10;References;266
21;13 Adaptive Attenuation of Multiple Sparse Unknown and Time-Varying Narrow-Band Disturbances;269
21.1;13.1 Introduction;269
21.2;13.2 The Linear Control Challenge;269
21.2.1;13.2.1 Attenuation of Multiple Narrow-Band Disturbances Using Band-Stop Filters;271
21.2.2;13.2.2 IMP with Tuned Notch Filters;275
21.2.3;13.2.3 IMP Design Using Auxiliary Low Damped Complex Poles;276
21.3;13.3 Interlaced Adaptive Regulation Using Youla--Ku?era IIR Parametrization;277
21.3.1;13.3.1 Estimation of AQ;279
21.3.2;13.3.2 Estimation of BQ(q-1);281
21.4;13.4 Indirect Adaptive Regulation Using Band-Stop Filters;285
21.4.1;13.4.1 Basic Scheme for Indirect Adaptive Regulation;286
21.4.2;13.4.2 Reducing the Computational Load of the Design Using the Youla--Ku?era Parametrization;287
21.4.3;13.4.3 Frequency Estimation Using Adaptive Notch Filters;288
21.4.4;13.4.4 Stability Analysis of the Indirect Adaptive Scheme;291
21.5;13.5 Experimental Results: Attenuation of Three Tonal Disturbances with Variable Frequencies;291
21.6;13.6 Experimental Results: Comparative Evaluation of Adaptive Regulation Schemes for Attenuation of Multiple Narrow-Band Disturbances;292
21.6.1;13.6.1 Introduction;292
21.6.2;13.6.2 Global Evaluation Criteria;297
21.7;13.7 Concluding Remarks;304
21.8;13.8 Notes and References;304
21.9;References;305
22;Part V Feedforward-Feedback Attenuation of Broad-Band Disturbances;307
23;14 Design of Linear Feedforward Compensation of Broad-band Disturbances from Data;308
23.1;14.1 Introduction;308
23.2;14.2 Indirect Approach for the Design of the Feedforward Compensator from Data;311
23.3;14.3 Direct Approach for the Design of the Feedforward Compensator from Data;311
23.4;14.4 Direct Estimation of the Feedforward Compensator and Real-Time Tests;315
23.5;14.5 Concluding Remark;321
23.6;14.6 Notes and References;321
23.7;References;322
24;15 Adaptive Feedforward Compensation of Disturbances;324
24.1;15.1 Introduction;324
24.2;15.2 Basic Equations and Notations;327
24.3;15.3 Development of the Algorithms;329
24.4;15.4 Analysis of the Algorithms;332
24.4.1;15.4.1 The Perfect Matching Case;332
24.4.2;15.4.2 The Case of Non-perfect Matching;334
24.4.3;15.4.3 Relaxing the Positive Real Condition;336
24.5;15.5 Adaptive Attenuation of Broad-band Disturbances---Experimental Results;337
24.5.1;15.5.1 Broad-band Disturbance Rejection Using Matrix Adaptation Gain;338
24.5.2;15.5.2 Broad-band Disturbance Rejection Using Scalar Adaptation Gain;342
24.6;15.6 Adaptive Feedforward Compensation with Filtering of the Residual Error;349
24.7;15.7 Adaptive Feedforward + Fixed Feedback Compensation of Broad-band Disturbances;351
24.7.1;15.7.1 Development of the Algorithms;353
24.7.2;15.7.2 Analysis of the Algorithms;355
24.8;15.8 Adaptive Feedforward + Fixed Feedback Attenuation of Broad-band Disturbances---Experimental Results;356
24.9;15.9 Concluding Remarks;358
24.10;15.10 Notes and References;358
24.11;References;359
25;16 Youla--Ku?era Parametrized Adaptive Feedforward Compensators;363
25.1;16.1 Introduction;363
25.2;16.2 Basic Equations and Notations;364
25.3;16.3 Development of the Algorithms;366
25.4;16.4 Analysis of the Algorithms;369
25.4.1;16.4.1 The Perfect Matching Case;369
25.4.2;16.4.2 The Case of Non-perfect Matching;370
25.4.3;16.4.3 Relaxing the Positive Real Condition;371
25.4.4;16.4.4 Summary of the Algorithms;371
25.5;16.5 Experimental Results;373
25.5.1;16.5.1 The Central Controllers and Comparison Objectives;373
25.5.2;16.5.2 Broad-band Disturbance Rejection Using Matrix Adaptation Gain;373
25.5.3;16.5.3 Broad-band Disturbance Rejection Using Scalar Adaptation Gain;376
25.6;16.6 Comparison of the Algorithms;378
25.7;16.7 Concluding Remarks;380
25.8;16.8 Notes and References;380
25.9;References;380
26;Appendix A Generalized Stability Margin and Normalized Distance Between Two Transfer Functions;382
27;Appendix B Implementation of the Adaptation Gain Updating---The U-D Factorization;386
28;Appendix C Interlaced Adaptive Regulation: Equations Development and Stability Analysis;388
29;Appendix D Error Equations for Adaptive Feedforward Compensation;392
30;Appendix E ``Integral + Proportional'' Parameter Adaptation Algorithm;399
31;Index;404


Ioan Doré Landau has been Emeritus Research Director at CNRS since September 2003 and continues to collaborate with LAG INPG.

His research interests encompass theory and applications in system identification, adaptive control, robust digital control and nonlinear systems. He has (co-)authored over 200 papers. He is the author of several books and holds several patents and was the origin of several software packages in control developed by ADAPTECH. He advised 35 PhD students. He has delivered a number of Plenary Talks at International Conferences.

Dr. Landau received the Rufus Oldenburger Medal 2000 from ASME. He was an IEEE-CSS "Distinguished Lecturer" for 2001-2003. He has been an IFAC Fellow since 2007 and received the Life Achievement Award from MCA in 2009.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.