Lan | Arithmetic Compactifications of PEL-Type Shimura Varieties | E-Book | sack.de
E-Book

E-Book, Englisch, 584 Seiten

Reihe: London Mathematical Society Monographs

Lan Arithmetic Compactifications of PEL-Type Shimura Varieties


Course Book
ISBN: 978-1-4008-4601-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 584 Seiten

Reihe: London Mathematical Society Monographs

ISBN: 978-1-4008-4601-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties.

PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications:

- A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures

- An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings

- A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary

Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai).

Lan Arithmetic Compactifications of PEL-Type Shimura Varieties jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


FrontMatter, pg. i
Contents, pg. v
Acknowledgments, pg. xi
Introduction, pg. xiii
Chapter One. Definition of Moduli Problems, pg. 1
Chapter Two. Representability of Moduli Problems, pg. 91
Chapter Three. Structures of Semi-Abelian Schemes, pg. 143
Chapter Four. Theory of Degeneration for Polarized Abelian Schemes, pg. 175
Chapter Five. Degeneration Data for Additional Structures, pg. 285
Chapter Six. Algebraic Constructions of Toroidal Compactifications, pg. 373
Chapter Seven. Algebraic Constructions of Minimal Compactifications, pg. 447
Appendix A. Algebraic Spaces and Algebraic Stacks, pg. 487
Appendix B. Deformations and Artin’s Criterion, pg. 519
Bibliography, pg. 535
Index, pg. 545


Kai-Wen Lan is assistant professor of mathematics at the University of Minnesota.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.