E-Book, Englisch, 562 Seiten, Web PDF
Reihe: Pure and Applied Mathematics
Revised and Enlarged Second Edition
E-Book, Englisch, 562 Seiten, Web PDF
Reihe: Pure and Applied Mathematics
ISBN: 978-1-4832-9595-4
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Random Matrices: Revised and Enlarged;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface to the Second Edition;12
6;Acknowledgments;16
7;Preface to the First Edition;18
8;Chapter 1. Introduction;20
8.1;1.1. Random Matrices in Nuclear Physics;20
8.2;1.2. Random Matrices in Other Branches of Knowledge;25
8.3;1.3. A Summary of Statistical Facts about Nuclear Energy Levels;29
8.4;1.4. Definition of a Suitable Function for the Study of Level Correlations;33
8.5;1.5. Wigner Surmise;34
8.6;1.6. Electromagnetic Properties of Small Metallic Particles;37
8.7;1.7. Analysis of Experimental Nuclear Levels;39
8.8;1.8. The Zeros of the Riemann Zeta Function;40
8.9;1.9. Things Worth Consideration, but Not Treated in This Book;52
9;Chapter 2. Gaussian Ensembles. The Joint Probability Density Function for the Matrix Elements;55
9.1;2.1. Preliminaries;55
9.2;2.2. Time-Reversal Invariance;56
9.3;2.3. Gaussian Orthogonal Ensemble;58
9.4;2.4. Gaussian Symplectic Ensemble;60
9.5;2.5. Gaussian Unitary Ensemble;65
9.6;2.6. Joint Probability Density Function for Matrix Elements;66
9.7;2.7. Another Gaussian Ensemble of Hermitian Matrices;71
9.8;2.8. Antisymmetric Hermitian Matrices;72
9.9;Summary of Chapter 2;72
10;Chapter 3. Gaussian Ensembles. The Joint Probability Density Function for the Eigenvalues;74
10.1;3.1. Orthogonal Ensemble;74
10.2;3.2. Symplectic Ensemble;78
10.3;3.3. Unitary Ensemble;81
10.4;3.4. Ensemble of Antisymmetric Hermitian Matrices;84
10.5;3.5. Another Gaussian Ensemble of Hermitian Matrices;85
10.6;3.6. Random Matrices and Information Theory;86
10.7;Summary of Chapter 3;88
11;Chapter 4. Gaussian Ensembles. Level Density;89
11.1;4.1. The Partition Function;89
11.2;4.2. The Asymptotic Formula for the Level Density. Gaussian Ensembles;91
11.3;4-3. The Asymptotic Formula for the Level Density. Other Ensembles;94
11.4;Summary of Chapter 4;97
12;Chapter 5. Gaussian Unitary Ensemble;98
12.1;5.1. Generalities;99
12.2;5.2. The n-Point Correlation Function;108
12.3;5.3. Level Spacings;114
12.4;5.4. Several Consecutive Spacings;120
12.5;5.5. Some Remarks;128
12.6;Summary of Chapter 5;140
13;Chapter 6. Gaussian Orthogonal Ensemble;142
13.1;6.1. Generalities;142
13.2;6.2. Quaternion Matrices;144
13.3;6.3. The Probability Density Function as a Quaternion Determinant;147
13.4;6.4. The Correlation and Cluster Functions;154
13.5;6.5. Level Spacings. Integration over Alternate Variables;157
13.6;6.6. Several Consecutive Spacings: n = 2r;161
13.7;6.7. Several Consecutive Spacings: n = 2r – 1;166
13.8;6.8. Bounds for the Distribution Function of the Spacings;171
13.9;Summary of Chapter 6;179
14;Chapter 7. Gaussian Symplectic Ensemble;181
14.1;7.1. A Quaternion Determinant;181
14.2;7.2. Correlation and Cluster Functions;184
14.3;7.3. Level Spacings;186
14.4;Summary of Chapter 7;188
15;Chapter 8. Gaussian Ensembles: Brownian Motion Model;189
15.1;8.1. Stationary Ensembles;189
15.2;8.2. Nonstationary Ensembles;189
15.3;8.3. Some Ensemble Averages;195
15.4;Summary of Chapter 8;198
16;Chapter 9. Circular Ensembles;200
16.1;9.1. The Orthogonal Ensemble;201
16.2;9.2. Symplectic Ensemble;204
16.3;9.3. Unitary Ensemble;206
16.4;9.4. The Joint Probability Density Function for the Eigenvalues;207
16.5;Summary of Chapter 9;212
17;Chapter 10. Circular Ensembles (Continued);213
17.1;10.1. Unitary Ensemble. Correlation and Cluster Functions;213
17.2;10.2. Unitary Ensemble. Level Spacings;216
17.3;10.3. Orthogonal Ensemble. Correlation and Cluster Functions;218
17.4;10.4. Orthogonal Ensemble. Level Spacings;225
17.5;10.5. Symplectic Ensemble. Correlation and Cluster Functions;229
17.6;10.6. Relation between Orthogonal and Symplectic Ensembles;231
17.7;10.7. Symplectic Ensemble. Level Spacings;233
17.8;10.8. Brownian Motion Model;235
17.9;10.9. Wigner's Method for the Orthogonal Circular Ensemble;237
17.10;Summary of Chapter 10;241
18;Chapter 11. Circular Ensembles. Thermodynamics;243
18.1;11.1. The Partition Function;243
18.2;11.2. Thermodynamic Quantities;246
18.3;11.3. Statistical Interpretation of U and C;249
18.4;11.4. Continuum Model for the Spacing Distribution;251
18.5;Summary of Chapter 11;257
19;Chapter 12. Asymptotic Behavior of Eß( 0 , s) for Large s;258
19.1;12.1. Asymptotics of the ..( t );259
19.2;12.2. Asymptotics of Toeplitz Determinants;262
19.3;12.3. Fredholm Determinants and the Inverse Scattering Theory;263
19.4;12.4. Application of the Gel'fand–Levitan Method;266
19.5;12.5. Application of the Marchenko Method;271
19.6;12.6. Asymptotic Expansions;274
19.7;Summary of Chapter 12;277
20;Chapter 13. Gaussian Ensemble of Antisymmetric Hermitian Matrices;279
20.1;13.1. Level Density. Correlation Functions;279
20.2;13.2. Level Spacings;282
20.3;Summary of Chapter 13;285
21;Chapter 14. Another Gaussian Ensemble of Hermitian Matrices;286
21.1;14.1. Summary of Results. Matrix Ensembles from GOE to GUE and Beyond;287
21.2;14.2. Matrix Ensembles from GSE to GUE and Beyond;294
21.3;14.3. Joint Probability Density for the Eigenvalues;298
21.4;14.4. Correlation and Cluster Functions;309
21.5;Summary of Chapter 14;312
22;Chapter 15. Matrices with Gaussian Element Densities but with No Unitary or Hermitian Conditions Imposed;313
22.1;15.1. Complex Matrices;313
22.2;15.2. Quaternion Matrices;320
22.3;15.3. Real Matrices;328
22.4;Summary of Chapter 15;329
23;Chapter 16. Statistical Analysis of a Level Sequence;330
23.1;16.1. Linear Statistics or the Number Variance;333
23.2;16.2. Least Square Statistic;338
23.3;16.3. Energy Statistic;343
23.4;16.4. Covariance of Two Consecutive Spacings;346
23.5;16.5. The F Statistic;349
23.6;16.6. The A Statistic;351
23.7;16.7. Statistics Involving Three- and Four-Level Correlations;352
23.8;16.8. Other Statistics;353
23.9;Summary of Chapter 16;357
24;Chapter 17. Selberg's Integral and Its Consequences;358
24.1;17.1. Selberg's Integral;358
24.2;17.2. Selberg's Proof of Equation (17.1.3);359
24.3;17.3. Aomoto's Proof of Equation (17.1.4);364
24.4;17.4. Other Averages;368
24.5;17.5. Other Forms of Selberg's Integral;368
24.6;17.6. Some Consequences of Selberg's Integral;371
24.7;17.7. Normalization Constant for the Circular Ensembles;375
24.8;17.8. Averages with Laguerre or Hermite Weights;375
24.9;17.9. Connection with Finite Reflection Groups;378
24.10;17.10. A Second Generalization of the Beta Integral;380
24.11;17.11. Some Related Difficult Integrals;383
24.12;Summary of Chapter 17;388
25;Chapter 18. Gaussian Ensembles. Level Density in the Tail of the Semicircle;390
25.1;18.1. Level Density near the Inflection Point;391
25.2;Summary of Chapter 18;395
26;Chapter 19. Restricted Trace Ensembles. Ensembles Related to the Classical Orthogonal Polynomials;396
26.1;19.1. Fixed Trace Ensemble;396
26.2;19.2. Bounded Trace Ensemble;400
26.3;19.3. Matrix Ensembles and Classical Orthogonal Polynomials;401
26.4;Summary of Chapter 19;403
27;Chapter 20. Bordered Matrices;405
27.1;20.1. Random Linear Chain;406
27.2;20.2. Bordered Matrices;410
27.3;Summary of Chapter 20;412
28;Chapter 21. Invariance Hypothesis and Matrix Element Correlations;413
28.1;21.1. Random Orthonormal Vectors;414
28.2;Summary of Chapter 21;418
29;Appendices;419
30;Notes;554
31;References;564
32;Author Index;574
33;Subject Index;578