E-Book, Englisch, 244 Seiten, eBook
Lai / Octorina Dewi Medical Imaging Technology
1. Auflage 2015
ISBN: 978-981-287-540-2
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Reviews and Computational Applications
E-Book, Englisch, 244 Seiten, eBook
Reihe: Lecture Notes in Bioengineering
ISBN: 978-981-287-540-2
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents the latest research findings and reviews in the field of medical imaging technology, covering ultrasound diagnostics approaches for detecting osteoarthritis, breast carcinoma and cardiovascular conditions, image guided biopsy and segmentation techniques for detecting lung cancer, image fusion, and simulating fluid flows for cardiovascular applications. It offers a useful guide for students, lecturers and professional researchers in the fields of biomedical engineering and image processing.
Dr. Khin Wee Lai obtained his PhD in Biomedical Engineering under DAAD PhD sandwich program between Technische Universität Ilmenau, Germany and Universiti Teknologi Malaysia, Johor Bahru. His research interests include medical imaging, 3D reconstruction and visualization, medical informatics and medical instrumentation. He is a professional member of ACM and he served as the member of board of editorial for a few international journals. Meanwhile, he is also the program committee and peer reviewer for over 20 international conferences. He has more than 30 publications and book chapters in the field of biomedical image processing.Dr. Dyah Ekashanti Octorina Dewi is with IJN-UTM Cardiovascular Engineering Center, Universiti Teknologi Malaysia, Johor Bahru, Malaysia. She obtained her PhD from Biomedical Engineering (Medical Sciences), Universitair Medisch Centrum Groningen - Rijksuniversiteit Groningen, The Netherlands. Her research interests include Bio Medical Imaging, Image Processing and Analysis, and Imaging Phantom. In the future she will focus her research on Rehabilitative Imaging.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;1 Improved Ultrasound Imaging for Knee Osteoarthritis Detection;10
2.1;Abstract;10
2.2;1.1 Introduction;11
2.2.1;1.1.1 Procedure of US Scanning Protocol;14
2.3;1.2 Technical Review of HE and AD Method;15
2.3.1;1.2.1 Review of Existing Contrast Enhancement System;15
2.3.2;1.2.2 Review on Existing Speckle Reduction Methods;17
2.4;1.3 Methodology;23
2.5;1.4 Proposed Contrast Enhancement Method;23
2.5.1;1.4.1 Multipurpose Beta Optimizes Recursive Bi-histogram Equalization;23
2.5.2;1.4.2 Preservation of Brightness Score (PBS) Function;25
2.5.3;1.4.3 The Optimum Contrast Score (OCS) Function;26
2.5.4;1.4.4 Preservation of Detail Score (PDS) Function;27
2.5.5;1.4.5 Construction of Final Score Function;28
2.5.6;1.4.6 The Proposed AD Method;28
2.5.7;1.4.7 Diffusivity Function for the Proposed AD Method;28
2.5.8;1.4.8 Estimation of Gradient Threshold for the Proposed AD Method;30
2.5.9;1.4.9 Stopping Criterion for the Proposed AD Method;31
2.5.10;1.4.10 Summary of the Proposed AD Method;32
2.5.11;1.4.11 Measurement Tools to Assess US Image Quality;32
2.6;1.5 Result and Discussion;34
2.6.1;1.5.1 For Proposed Contrast Enhancement Method;34
2.6.1.1;1.5.1.1 Qualitative Analysis;34
2.6.1.2;1.5.1.2 Quantitative Analysis;36
2.6.1.3;1.5.1.3 Histogram Equalization;36
2.6.1.4;1.5.1.4 Mean Shift;39
2.6.1.5;1.5.1.5 Graph by Entropy;39
2.6.2;1.5.2 For Proposed AD Method;40
2.6.2.1;1.5.2.1 Qualitative Analysis;40
2.6.2.2;1.5.2.2 Test on Cartilage Image;42
2.6.2.3;1.5.2.3 Quantitative Analysis;43
2.7;1.6 Conclusion and Future Work;45
2.8;Acknowledgments;46
2.9;Appendix;46
2.10;References;47
3;2 Review on Image Guided Lung Biopsy;50
3.1;Abstract;50
3.2;2.1 Introduction;51
3.3;2.2 Image Guided Biopsy;52
3.3.1;2.2.1 Image Guided Biopsy System;52
3.3.2;2.2.2 Image Guided Biopsy Testing;53
3.4;2.3 Bronchoscopy Based Method;54
3.4.1;2.3.1 Procedure;54
3.4.2;2.3.2 Technologies and Methods;55
3.4.3;2.3.3 Clinical Value;59
3.5;2.4 Needle Based Method;60
3.5.1;2.4.1 Procedure;60
3.5.2;2.4.2 Technologies and Methods;60
3.5.3;2.4.3 Clinical Value;62
3.6;2.5 Conclusion;63
3.7;References;63
4;3 Position Tracking Systems for Ultrasound Imaging: A Survey;66
4.1;Abstract;66
4.2;3.1 Introduction;67
4.3;3.2 Position Tracking Technology;68
4.3.1;3.2.1 Optical Tracking System;68
4.3.2;3.2.2 Electromagnetic Tracking System;72
4.3.3;3.2.3 Inertial Tracking System;74
4.3.4;3.2.4 Mechanical Tracking System;75
4.3.5;3.2.5 Hybrid Tracking System;77
4.3.6;3.2.6 Other System (Commercial Off-the-Shelf (COTS) Consoles);79
4.4;3.3 Ultrasound Imaging and Position Tracking Integration;81
4.5;3.4 Conclusions;93
4.6;References;93
5;4 Multimodal Medical Image Fusion in Cardiovascular Applications;99
5.1;Abstract;99
5.2;4.1 Introduction;100
5.3;4.2 Multimodal Image Fusion;102
5.3.1;4.2.1 Image Fusion;102
5.3.2;4.2.2 Fusion Levels;103
5.3.3;4.2.3 Imaging Modalities;104
5.3.4;4.2.4 Modality Combinations;107
5.3.5;4.2.5 Image Registration;108
5.3.6;4.2.6 Medical Image Fusion Techniques;109
5.4;4.3 Quality Assessment;110
5.4.1;4.3.1 Universal Image Quality Index (UIQI);110
5.4.2;4.3.2 Mutual Information;111
5.4.3;4.3.3 Entropy;111
5.4.4;4.3.4 Structural Similarity Image Measure;112
5.5;4.4 Conclusions;113
5.6;References;113
6;5 Performance Evaluation of Lung Segmentation;118
6.1;Abstract;118
6.2;5.1 Introduction;119
6.3;5.2 Performance Evaluation Methods;120
6.3.1;5.2.1 Quantitative Methods;120
6.3.1.1;5.2.1.1 Area Based Evaluation Method;121
6.3.1.1.1;Dice Similarity Coefficient (DSC);121
6.3.1.1.2;Jaccard Index;121
6.3.1.1.3;Relative Volume Difference (RVD);121
6.3.1.1.4;Volume Overlap Error (VOE);122
6.3.1.2;5.2.1.2 Surface Based Evaluation Method;122
6.3.1.2.1;Average Symmetric Surface Distance (ASSD);122
6.3.1.2.2;Root Mean Square Symmetric Surface Distance (RMSD);122
6.3.1.2.3;Euclidean Distance Metric;123
6.3.1.2.4;Polyline Distance Metric (PDM);123
6.3.1.2.5;Hausdorff Distance;125
6.3.2;5.2.2 Qualitative Methods;125
6.3.2.1;5.2.2.1 Bland-Altman Plot;125
6.3.2.2;5.2.2.2 Scatter Plot;126
6.4;5.3 Performance Evaluation of Automated Lung Segmentation Systems (ALSS);126
6.4.1;5.3.1 Data Acquisition;126
6.4.2;5.3.2 Manual Tracing;127
6.4.3;5.3.3 Automatic Lung Segmentation System (ALSS);127
6.4.4;5.3.4 Performance Evaluation Measures;128
6.5;5.4 Results;128
6.6;5.5 Discussion;131
6.7;5.6 Conclusion;133
6.8;References;133
7;6 A Review on Fluid Simulation Method for Blood Flow Representation;135
7.1;Abstract;135
7.2;6.1 Introduction;135
7.3;6.2 Application of Blood Flow Simulation for Surgical Planning;136
7.4;6.3 Overview of Blood Flow Physiology and Environment;137
7.5;6.4 Computational Fluid Dynamics (CFD);138
7.5.1;6.4.1 Mesh-Based Method;140
7.5.2;6.4.2 Mesh-less Method;142
7.6;6.5 Real-Time Blood Flow Simulation;143
7.7;6.6 Discussion;144
7.8;6.7 Conclusion;146
7.9;Acknowledgments;146
7.10;References;146
8;7 State of the Art in the 3D Cardiovascular Visualization;148
8.1;Abstract;148
8.2;7.1 Introduction;149
8.3;7.2 Overview of Flow Visualization;150
8.4;7.3 Visualization Pipeline;151
8.4.1;7.3.1 Data Acquisition;152
8.4.2;7.3.2 Data Enrichment/Enhancement;152
8.4.2.1;7.3.2.1 Filtering;152
8.4.2.2;7.3.2.2 Data Selection;152
8.4.2.3;7.3.2.3 Interpolation;153
8.4.3;7.3.3 Visualization Mapping;153
8.4.4;7.3.4 Rendering and Display;154
8.4.5;7.3.5 Visualization Pipeline Summary;155
8.5;7.4 Flow Visualisation Classification;156
8.5.1;7.4.1 Research in Flow Visualization;157
8.5.2;7.4.2 Integration-Based and Geometric Flow Visualization Technique;157
8.5.3;7.4.3 Dense and Texture Based Technique;161
8.6;7.5 Analysis and Discussion;167
8.7;7.6 Applications and Available Systems;170
8.8;7.7 Conclusion;171
8.9;References;172
9;8 Virtual Surgery, Applications and Limitations;174
9.1;Abstract;174
9.2;8.1 Introduction;174
9.3;8.2 Medical Images;176
9.4;8.3 Virtual Reality in Medicine;176
9.4.1;8.3.1 2D Images;177
9.4.2;8.3.2 3D Images;177
9.4.3;8.3.3 3D Virtual Body Structures;178
9.5;8.4 Different Generation of Surgery;179
9.5.1;8.4.1 Early Times;179
9.5.2;8.4.2 Refining the Appearance;179
9.5.3;8.4.3 Adding Physiological Details;180
9.6;8.5 Surgical Simulator Requirements;180
9.6.1;8.5.1 Data Acquisition;180
9.6.2;8.5.2 Imaging Modalities;180
9.6.3;8.5.3 Segmentation;181
9.6.4;8.5.4 Fusion of Multi-Modality Data;181
9.6.5;8.5.5 Registration;182
9.6.6;8.5.6 Modeling;182
9.6.7;8.5.7 Interaction;182
9.7;8.6 Area of VR Simulation;183
9.7.1;8.6.1 Training;183
9.7.2;8.6.2 Diagnosis and Pre-operative Planning;184
9.7.3;8.6.3 Intra Operating;184
9.7.4;8.6.4 Assistance Surgery Tools;185
9.7.5;8.6.5 Touch Simulation;185
9.8;8.7 Virtual Reality and Augmented Reality Simulators;185
9.8.1;8.7.1 Virtual Reality;185
9.8.2;8.7.2 Augmented Reality;187
9.9;8.8 Conclusion;193
9.10;Acknowledgments;193
9.11;References;193
10;9 Oriented Speckle Reducing Anisotropic Diffusion (OSRAD) for Dilated Cardiomyopathy (DCM);201
10.1;Abstract;201
10.2;9.1 Introduction;201
10.3;9.2 Review on Existing Speckle Reduction Methods;202
10.4;9.3 Methodology;205
10.5;9.4 Conclusion and Future Work;207
10.6;References;207
11;10 Measurement of Ultrasound Attenuation and Protein Denaturation Behavior During Hyperthermia Monitoring;208
11.1;Abstract;208
11.2;10.1 Introduction;209
11.3;10.2 Literature Review;210
11.3.1;10.2.1 Human Breast Anatomy and Breast Cancer;210
11.3.2;10.2.2 Hyperthermia Therapy and Its Thermometry Monitoring Using Ultrasound;211
11.4;10.3 Methodology;212
11.4.1;10.3.1 Experimental Set up;212
11.4.2;10.3.2 Animal Handling;213
11.4.3;10.3.3 Tissue Preparation Study;214
11.4.4;10.3.4 Total Protein Measurement;215
11.4.5;10.3.5 Histology of Breast Tissue;216
11.4.6;10.3.6 Ultrasound Attenuation Analysis;216
11.4.7;10.3.7 Statistical Analysis;217
11.5;10.4 Result and Discussion;217
11.5.1;10.4.1 Histology Result;217
11.5.2;10.4.2 Ultrasound Attenuation Result and Discussion;218
11.5.3;10.4.3 Total Protein Measurement in Tissue After Hyperthermia;222
11.6;10.5 Conclusion;223
11.7;References;223
12;11 Development of Flexible Bronchoscope Device Using Soft Actuator;226
12.1;Abstract;226
12.2;11.1 Introduction;227
12.2.1;11.1.1 Flexible Bronchoscope;227
12.2.2;11.1.2 Airway Anatomy for Bronchoscopist;228
12.2.3;11.1.3 Advantages and Disadvantages of Flexible Bronchoscope;229
12.2.4;11.1.4 Development of Soft Actuator;229
12.3;11.2 Various Fiber Structure Concept to Produce Twisting and Bending Soft Actuator;231
12.3.1;11.2.1 Bending Soft Actuator with Two Chambers and Single 90? Fiber Angle Structure;231
12.3.2;11.2.2 Bending Soft Actuator with Two Chambers and Single Cross Sectional Fiber Angle Structure;231
12.3.3;11.2.3 Twisting Soft Actuator with One Chamber and Parallel Fiber Angle Structure;232
12.4;11.3 Manufacturing Process of Twisting and Bending Soft Actuator;232
12.4.1;11.3.1 Design and Specification;232
12.4.2;11.3.2 Fabrication of Twisting and Bending Soft Actuator;234
12.4.3;11.3.3 Implementation;239
12.5;11.4 Experimental Results of Twisting and Bending Soft Actuator;240
12.6;11.5 Discussion;242
12.7;11.6 Conclusions;243
12.8;Acknowledgments;243
12.9;References;243
Improved Ultrasound Imaging For Knee Osteoarthritis Detection.- Review on Image Guided Lung Biopsy.- Position Tracking Systems for Ultrasound Imaging – A Survey.- Multimodal Medical Image Fusion in Cardiovascular Applications.- Performance Evaluation of Lung Segmentation.- A Review on Fluid Simulation Method for Blood Flow Representation.- State Of The Art in the 3D Cardiovascular Visualization.