Lagnese / Leugering | Domain Decomposition Methods in Optimal Control of Partial Differential Equations | E-Book | sack.de
E-Book

E-Book, Englisch, Band 148, 443 Seiten, eBook

Reihe: International Series of Numerical Mathematics

Lagnese / Leugering Domain Decomposition Methods in Optimal Control of Partial Differential Equations


2004
ISBN: 978-3-0348-7885-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 148, 443 Seiten, eBook

Reihe: International Series of Numerical Mathematics

ISBN: 978-3-0348-7885-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



While domain decomposition methods have a long history dating back well over one hundred years, it is only during the last decade that they have become a major tool in numerical analysis of partial differential equations. This monograph emphasizes domain decomposition methods in the context of so-called virtual optimal control problems and treats optimal control problems for partial differential equations and their decompositions using an all-at-once approach.

Lagnese / Leugering Domain Decomposition Methods in Optimal Control of Partial Differential Equations jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Introduction.- 2 Background Material on Domain Decomposition.- 2.1 Introduction.- 2.2 Domain Decomposition for 1-d Problems.- 2.2.1 Unbounded Domains.- 2.2.2 Bounded Domains.- 2.2.3 Semi-discretization.- 2.3 Domain Decomposition Methods for Elliptic Problems.- 2.3.1 Review of Basic Methods.- 2.3.2 Virtual Controls.- 2.3.3 The Basic Algorithm of P.-L. Lions.- 2.3.4 An Augmented Lagrangian Formulation.- 2.3.5 General Elliptic Problems and More General Splittings.- 2.3.6 An a Posteriori Error Estimate.- 2.3.7 Interpretation as a Damped Richardson iteration.- 2.3.8 A Serial One-Dimensional Problem.- 3 Partial Differential Equations on Graphs.- 3.1 Introduction.- 3.2 Partial Differential Operators on Graphs.- 3.3 Elliptic Problems on Graphs.- 3.3.2 Domain Decomposition.- 3.3.3 Convergence.- 3.3.4 Interpretation as a Richardson Iteration.- 3.4 Hyperbolic Problems on Graphs.- 3.4.1 The Model.- 3.4.2 The Domain Decomposition Procedure.- 4 Optimal Control of Elliptic Problems.- 4.1 Introduction.- 4.2 Distributed Controls.- 4.2.2 Domain Decomposition.- 4.2.3 A Complex Helmholtz Problem and its Decomposition.- 4.2.4 Convergence.- 4.2.5 Methods for Elliptic Optimal Control Problems.- 4.2.6 An A Posteriori Error Estimate.- 4.3 Boundary Controls.- 4.3.2 Domain Decomposition.- 4.3.3 Convergence.- 4.3.4 An A Posteriori Error Estimate.- 5 Control of Partial Differential Equations on Graphs.- 5.1 Introduction.- 5.2 Elliptic Problems.- 5.2.1 The Global Optimal Control Problem on a Graph.- 5.2.2 Domain Decomposition.- 5.2.3 Distributed Controls.- 5.2.4 Boundary Controls.- 5.3 Hyperbolic Problems.- 5.3.1 The Global Optimal Control Problem on a Graph.- 5.3.2 The Domain Decomposition Procedure.- 6 Control of Dissipative Wave Equations.- 6.1 Introduction.- 6.2 Optimal Dissipative Boundary Control.- 6.2.1 Setting the Problem.- 6.2.2 Existence and Regularity of Solutions.- 6.2.3 The Global Optimality System.- 6.3 Time Domain Decomposition.- 6.3.1 Description of the Algorithm.- 6.3.2 Convergence of the Iterates.- 6.3.3 A Posteriori Error Estimates.- 6.3.4 Extension to General Dissipative Control Systems.- 6.4 Decomposition of the Spatial Domain.- 6.4.1 Description of the Algorithm.- 6.4.2 Convergence of the Iterates.- 6.4.3 A Posteriori Error Estimates.- 6.5 Space and Time Domain Decomposition.- 6.5.1 Sequential Space-Time Domain Decomposition.- 6.5.2 Sequential Time-Space Domain Decomposition.- 7 Boundary Control of Maxwell’s System.- 7.1 Introduction.- 7.2 Optimal Dissipative Boundary Control.- 7.2.1 Setting the Problem.- 7.2.2 Existence and Uniqueness of Solution.- 7.2.3 The Global Optimality System.- 7.3 Time Domain Decomposition.- 7.3.1 Description of the Algorithm.- 7.3.2 Convergence of the Iterates.- 7.3.3 A Posteriori Error Estimates.- 7.4 Decomposition of the Spatial Domain.- 7.4.1 Description of the Algorithm.- 7.4.2 Convergence of the Iterates.- 7.4.3 A Posteriori Error Estimates.- 7.5 Time and Space Domain Decomposition.- 7.5.1 Sequential Space-Time Domain Decomposition.- 7.5.2 Sequential Time-Space Domain Decomposition.- 8 Control of Conservative Wave Equations.- 8.1 Introduction.- 8.2 Optimal Boundary Control.- 8.2.1 Setting the Problem.- 8.2.2 Existence and Regularity of Solutions.- 8.2.3 The Global Optimality System.- 8.3 Time Domain Decomposition.- 8.3.1 Description of the Algorithm.- 8.3.2 Convergence of the Iterates.- 8.3.3 A Posteriori Error Estimates.- 8.3.4 Extension to General Conservative Control Systems.- 8.4 Decomposition of the Spatial Domain.- 8.4.1 The Local Optimality Systems.- 8.4.2 The Domain Decomposition Algorithm.- 8.4.3 Convergence of the Iterates.- 8.5 The Exact Reachability Problem.- 8.5.1 The Global Optimality System.- 8.5.2 The Limit of the Local Optimality Systems.- 8.5.3 Application to Domain Decomposition.- 8.5.4 Convergence to the Global Optimality System.- 9 Domain Decomposition for 2-D Networks.- 9.1 Elliptic Systems on 2-D Networks.- 9.1.2 Examples.- 9.1.3 Existence and Uniqueness of Solutions.- 9.1.4 Domain Decomposition.- 9.1.5 Convergence of the Algorithm.- 9.2 Optimal Control on 2-D Networks.- 9.2.1 Optimal Final Value Control.- 9.2.2 Existence and Regularity of Solutions.- 9.3 Decomposition of the Spatial Domain.- 9.3.2 The Decomposition Algorithm.- 9.3.3 Convergence of the Algorithm.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.