E-Book, Englisch, 528 Seiten
Reihe: Engineering Materials
La Porta / Taft Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies
1. Auflage 2020
ISBN: 978-3-030-31403-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 528 Seiten
Reihe: Engineering Materials
ISBN: 978-3-030-31403-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
In this book, the authors discuss some of the main challenges and new opportunities in science and engineering research, which involve combining computational and experimental approaches as a promising strategy for arriving at new insights into composition-structure-property relations, even at the nanoscale. From a practical standpoint, the authors show that significant improvements in the material/biomolecular foresight by design, including a fundamental understanding of their physical and chemical properties, are vital and will undoubtedly help us to reach a new technological level in the future.
Professor Dr. Felipe de Almeida La Porta received his Ph.D. in Chemistry from São Paulo State University (UNESP) in Araraquara, Brazil, in 2014. He was subsequently a Postdoctoral Research Fellow at the Multidisciplinary Center for the Development of Ceramic Materials at the Federal University of São Carlos (UFSCAR), Brazil, and at the Institute of Advanced Materials, Universitat Jaume I (UJI), in Castellon de la Plana, Spain. Since 2015, he has been an Adjunct Professor of Chemistry and Materials Science at the Federal Technological University of Paraná (UTFPR). His research interests are in the fields of materials synthesis and the applications of novel advanced materials - based on a combination of experimental and theoretical approaches. He is Co-Editor of the book 'Recent Advances in Complex Functional Materials: From Design to Application.'
Professor Dr. Carlton A. Taft earned his Master of Science degree in Physics from the University of Illinois (USA) in 1969, and his Ph.D. in Physics from the Centro Brasileiro de Pesquisas Físicas in 1975, prior to doing postdoctoral work as a senior visitor to the Chemistry Department, University of California (USA) in the 1980s. He was hired by the CBPF in 1976 and worked his way up through the decades from Assistant to Associate and eventually Full Professor. He has published over 200 international papers in indexed scientific journals and 19 book chapters, and has served as Editor for 5 books, Guest Editor for 6 special issues, and Referee for over 50 indexed scientific journals. He works in multidisciplinary areas with a focus on theoretical-computational physical/chemical/biological/engineering applications in the molecular and material sciences.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Strategies and Research with Advanced Engineering Materials;11
4;1 Plasmon Enhanced Hybrid Photovoltaics;12
4.1;Abstract;12
4.2;1 Metal Nanoparticles and Localized Surface Plasmons;13
4.3;2 Excitons in Semiconductor Nanocrystals;15
4.4;3 Fabrication Techniques of Metal NPs, Semiconductor NCs and Metal-Semiconductor Hybrids;18
4.4.1;3.1 Synthesis of Metal NPs;18
4.4.2;3.2 Synthesis of Semiconductor NCs;24
4.4.3;3.3 Synthesis of Metal-Semiconductor Hybrid Nanostructures;28
4.5;4 Structural, Electrical and Optical Characterization Techniques;39
4.6;5 Structural Methods;40
4.7;6 Electrical Measurement Tools;43
4.8;7 Optical Methods;47
4.9;8 Operational Mechanism and Design Principles in Plasmon Enhanced Photovoltaics;50
4.10;9 Concluding Remarks (Outlook and Perspective);63
4.11;References;65
5;2 Photocatalytic and Photoluminescent Properties of TiO2 Nanocrystals Obtained by the Microwave Solvothermal Method;76
5.1;Abstract;76
5.2;1 Introduction;77
5.3;2 Materials and Methods;78
5.3.1;2.1 Synthesis of Photocatalysts;78
5.3.2;2.2 Photocatalytic Process;79
5.3.3;2.3 Adsorption Tests;79
5.3.3.1;2.3.1 Adsorption Isotherms;79
5.4;3 Results and Discussion;80
5.4.1;3.1 Characterization of Photocatalysts;80
5.4.2;3.2 Adsorption and Photocatalytic Tests;85
5.5;4 Conclusions;89
5.6;Acknowledgements;89
5.7;References;90
6;3 Magnetic Molecularly Imprinted Polymers for Selective Adsorption of Quinoline: Theoretical and Experimental Studies;93
6.1;Abstract;93
6.2;1 Introduction;94
6.3;2 Materials and Methods;95
6.3.1;2.1 Chemicals;95
6.3.2;2.2 Apparatus;95
6.3.3;2.3 Preparation of ?-Fe2O3;96
6.3.4;2.4 Preparation of MMIP-EC and MMIP-EM;96
6.3.5;2.5 Adsorption Tests;96
6.3.6;2.6 Isotherm Adsorption;98
6.3.7;2.7 Kinetic Studies;99
6.3.8;2.8 Thermodynamic Parameters;100
6.3.9;2.9 Selectivity Tests for the Quinoline Adsorption;100
6.3.10;2.10 Recyclability Studies;101
6.3.11;2.11 Computational Details;101
6.4;3 Results and Discussion;101
6.4.1;3.1 Characterization;102
6.4.1.1;3.1.1 Thermogravimetric Analysis;102
6.4.1.2;3.1.2 Scanning Electronic Microscopy (SEM);102
6.4.1.3;3.1.3 Surface Characterization;103
6.4.1.4;3.1.4 Fourier Transform Infrared (FTIR);105
6.4.2;3.2 Adsorption Tests;105
6.4.2.1;3.2.1 Kinetics Studies;106
6.4.2.2;3.2.2 Adsorption Isotherms;108
6.4.2.3;3.2.3 Thermodynamic Parameters;110
6.4.2.4;3.2.4 Selectivity Tests for the Quinoline Adsorption;110
6.4.2.5;3.2.5 Recyclability Studies;111
6.5;4 Conclusions;112
6.6;References;112
7;4 Insights into Novel Antimicrobial Based on Chitosan Nanoparticles: From a Computational and Experimental Perspective;115
7.1;Abstract;115
7.2;1 Introduction;116
7.3;2 Chitosan and the Importance of Computational Methods;117
7.4;3 Molecular Mechanics;118
7.4.1;3.1 Molecular Docking;118
7.4.2;3.2 Quantitative Analysis Between Chemical Structure and Biological Activity;119
7.4.3;3.3 Molecular Dynamics;120
7.5;4 Quantum Mechanics;121
7.5.1;4.1 Mechanical and Molecular Mechanics (QM/MM);121
7.5.2;4.2 Density Functional Theory;122
7.6;5 In Silico Studies of Nanoparticles Based on Chitosan and Chitin Derivatives;122
7.7;6 Synthesis of Chitosan Nanoparticles;125
7.7.1;6.1 Ionic Gelation or Ionotropic Gelation;126
7.7.2;6.2 Polyelectrolyte Complexation—PEC or Self-assembling Method;127
7.7.3;6.3 Microemulsion Method;128
7.7.4;6.4 Emulsification Solvent Diffusion Method;129
7.8;7 Modifications in Chitosan Nanoparticles for the Antimicrobial Effect Potentialization;131
7.9;8 Pharmacological Potential from Chitosan and Its Derivatives;134
7.10;References;140
8;5 Effect of Light Stimulation on a Thermo-Cellulolytic Bacterial Consortium Used for the Degradation of Cellulose of Green Coconut Shells;152
8.1;Abstract;152
8.2;1 Introduction;153
8.3;2 Methods;154
8.3.1;2.1 Pretreatment of Coconut Shell;154
8.3.2;2.2 Microbial Sample Collection;155
8.3.3;2.3 Selection of the Thermo-Cellulolytic Microorganisms;155
8.3.4;2.4 Characteristics of the Thermo-Cellulolytic Consortium;155
8.3.4.1;2.4.1 Cellulolytic Activity;155
8.3.4.2;2.4.2 Morphological Analysis of the Microbial Consortium;156
8.3.4.3;2.4.3 Growth Curve of the Microbial Consortium;156
8.3.5;2.5 Evaluation of the Photostimulation of the Microbial Consortium;157
8.3.6;2.6 Assessment of the Lignolytic Activity;157
8.3.6.1;2.6.1 Nucleic Acid Analysis by Epifluorescence;158
8.3.7;2.7 Quantification of the Cellulose Hydrolysis Products;158
8.3.7.1;2.7.1 Determination of the Total Reducing Sugars;158
8.3.7.2;2.7.2 Quantification of the Glucose;159
8.3.8;2.8 Bacterial Quantification by Epifluorescence;161
8.3.9;2.9 Statistical Analysis;161
8.4;3 Results and Discussion;161
8.4.1;3.1 Pretreatments of the Coconut Shell;161
8.4.2;3.2 Selection of the Do Thermo-Cellulolytic Consortium;162
8.4.3;3.3 Characteristics of the Thermo-Cellulolytic Consortium;162
8.4.3.1;3.3.1 Cellulolytic Activity;162
8.4.3.2;3.3.2 Morphological Analysis of Microbial Consortium;163
8.4.3.3;3.3.3 Growth Kinetics of the Microbial Consortium;163
8.4.4;3.4 Assessment of the Photobiomodulation of the Thermo-Cellulolytic Consortium;164
8.4.5;3.5 Assessment of the Lignolytic Activity in the Photostimulated Microbial Consortium;167
8.4.6;3.6 Determination of Reducing Sugars;169
8.4.7;3.7 Quantification of Glucose;170
8.4.8;3.8 Microbial Quantification by Epifluorescence;171
8.5;4 Conclusion;172
8.6;References;172
9;6 High Coverage of H2, CH4, NH3 and H2O on (110) SnO2 Nanotubes;176
9.1;Abstract;176
9.2;1 Inorganic Nanotubes;177
9.3;2 Metal Oxides;181
9.3.1;2.1 Tin Dioxide (SnO2);182
9.4;3 Adsorption of Gases on SnO2;184
9.5;4 Simulation Models for Materials Study and Design;185
9.6;5 PM7 and DFT Calculations;186
9.7;6 Computational Details;187
9.8;7 Results and Discussion;188
9.9;8 Conclusion;192
9.10;Acknowledgements;192
9.11;References;193
10;7 Surface Engineering in Alloyed CdSe/CdSexCdS1–x/CdS Core-Shell Colloidal Quantum Dots for Enhanced Optoelectronic Applications;196
10.1;Abstract;196
10.2;1 Introduction;197
10.3;2 Samples and Experimental Section;198
10.4;3 Results and Discussion;201
10.4.1;3.1 Steady-State and Time-Resolved Photoluminescence;201
10.4.2;3.2 Photoluminescence as a Function of Temperature: Thermal Carrier Transfer;206
10.5;4 Conclusions;208
10.6;References;209
11;Biomolecular, Antimicrobial Research Insights and Applications;213
12;8 Antimicrobial Activity of Nanocrystals;214
12.1;Abstract;214
12.2;1 Overview of Antimicrobial Resistance;215
12.3;2 Metallic Nanocrystals;216
12.3.1;2.1 Synthesis Approaches of MNCs;216
12.3.2;2.2 MNCs Characterization Techniques;218
12.3.3;2.3 Applications of MNCs;219
12.4;3 Cellulose Nanocrystals;220
12.4.1;3.1 Nanocelluloses;221
12.4.2;3.2 Antibacterial Studies;222
12.5;References;223
13;9 Connecting Pathway Errors in the Insulin Signaling Cascade: The Molecular Link to Inflammation, Obesity, Cancer, and Alzheimer’s Disease;227
13.1;Abstract;227
13.2;1 Introduction;229
13.2.1;1.1 Pathophysiology of Insulin Resistance and Resulting Comorbidities;229
13.2.2;1.2 The Insulin Receptor and the Insulin Signaling Cascade;230
13.2.3;1.3 Insulin Resistance and Cell Starvation;232
13.2.4;1.4 Insulin Resistance: Downregulation of the Insulin Signaling Pathway;233
13.2.5;1.5 Insulin Signaling Pathway: Up Regulation of Insulin Transmission Mechanisms;234
13.3;2 Insulin Signaling Cascades;235
13.3.1;2.1 The Three-Protein Kinase Signaling Systems;235
13.3.2;2.2 The Insulin Transduction Mechanism;238
13.3.3;2.3 The Role of Insulin as a Regulator, Mediator, and Modulator in the PI3K/Akt and CAP/Cbl Pathways;240
13.3.4;2.4 The Role of Insulin as a Mediator in Ras/MAPK Signaling;241
13.3.5;2.5 The Connection Between PI3K and CAP/Cbl;242
13.4;3 Regulation of the Insulin Signaling Pathway;244
13.4.1;3.1 Cancer and Hyperinsulinaemia;244
13.4.2;3.2 Down Regulation: Prevention of Insulin Overload;246
13.4.3;3.3 Insulin Receptor Degradation;247
13.4.4;3.4 IRS Degradation;248
13.4.5;3.5 Phosphatases;248
13.4.6;3.6 Other Phosphatases and Insulin Receptor Regulators;250
13.4.7;3.7 Serine Phosphorylation;250
13.4.8;3.8 Inflammation;252
13.4.9;3.9 Obesity;252
13.4.10;3.10 The Connection Between Inflammation and Obesity;254
13.4.11;3.11 Role of Insulin Signaling Pathway in Vascular Stability;255
13.5;4 Implications of Insulin in Alzheimer’s Disease;255
13.5.1;4.1 Alzheimer’s Disease;255
13.6;5 Conclusion;258
13.7;References;258
14;10 Prediction of the Three-Dimensional Structure of Phosphate-6-mannose PMI Present in the Cell Membrane of Xanthomonas citri subsp. citri of Interest for the Citrus Canker Control;263
14.1;Abstract;263
14.2;1 Introduction;264
14.2.1;1.1 Recent Discoveries in Citrus Canker Bacteria;265
14.2.2;1.2 Molecular Modelling: Treading/Folding Recognition and Homology Modelling;266
14.3;2 Theoretical Support for the Prediction of a Protein Model Through the Protein Structural Homology Technique;268
14.4;3 Development and Evaluation of the Generated PMI Model;270
14.4.1;3.1 Approval Sequence Identification Step;270
14.4.2;3.2 Model Construction and Evaluation Stage;272
14.4.2.1;3.2.1 Evaluation of Dihedral Angles ? Versus Versus ? Through the Ramachandran Diagram;274
14.4.2.2;3.2.2 Other Important Parameters for the Analysis (Suite SAVE v5);275
14.5;4 Conclusion;278
14.6;Acknowledgements;278
14.7;References;278
15;11 Design of Inhibitors of the Human Fibroblast Activation Protein ? as a Strategy to Hinder Metastasis and Angiogenesis;281
15.1;Abstract;281
15.2;1 Introduction;282
15.3;2 The Role of the Fibroblast Activation Protein ? (FAP) in Cancers;283
15.4;3 Strategies for the Design of FAP Inhibitors;284
15.5;4 An In Silico SBDD Workflow for the Discovery of FAP Inhibitors;293
15.6;5 Conclusions;302
15.7;Acknowledgements;302
15.8;References;302
16;12 Pharmacophore Mapping of Natural Products for Pancreatic Lipase Inhibition;308
16.1;Abstract;308
16.2;1 Introduction;309
16.3;2 Natural Products for Drug Discovery and Development;309
16.4;3 Obesity;311
16.5;4 Pancreatic Lipase as a Target for Anti-obesity Drugs;314
16.5.1;4.1 Myrciaria Genus;316
16.6;5 Pharmacophore-Based Drug Design;318
16.7;6 Pharmacophore Mapping of Chemical Markers from Myrciaria Genus Species for Pancreatic Lipase Inhibition;320
16.8;7 Data Preparation;320
16.9;8 Pharmacophore Modeling;323
16.10;9 Conclusion;334
16.11;References;335
17;Perspectives and Strategies for Zeolites, Graphitic, Polymeric and Ferrite Systems;342
18;13 Theoretical Insights About the Chemical Dependent Role of Exchange-Correlation Functionals: A Case Study;343
18.1;Abstract;343
18.2;1 Introduction;343
18.2.1;1.1 Bravais Lattices;343
18.3;2 Band Theory: Fundamentals for Electronic and Optical Properties;345
18.4;3 Elastic Properties: Crystalline Materials Behavior Under Mechanic Forces;347
18.5;4 Density Functional Theory: The Role of the Functional;348
18.6;5 Crystalline Structures;350
18.7;6 Computational Method;351
18.8;7 Results and Discussion;353
18.9;8 Conclusion;357
18.10;Acknowledgements;357
18.11;References;358
19;14 Design and Applications in Catalytic Processes of Zeolites Synthesized by the Hydrothermal Method;360
19.1;Abstract;360
19.2;1 Introduction;361
19.3;2 The Hydrothermal Method for Zeolite Synthesis;364
19.4;3 Influence of Synthesis Conditions on Zeolite Properties;366
19.4.1;3.1 Aluminum and Silicon Sources;366
19.4.1.1;3.1.1 Silicon Sources;366
19.4.1.2;3.1.2 Alumina Sources;368
19.4.1.3;3.1.3 Alternative Sources of Aluminum and Silicon;369
19.4.2;3.2 Crystallization Time and Temperature;370
19.4.3;3.3 Structure Directing Agents (SDAs) in Zeolite Synthesis;371
19.5;4 General Uses of Zeolites;376
19.5.1;4.1 Catalytic Applications of Zeolites;377
19.6;5 Conclusion;383
19.7;References;383
20;15 Design and Applications of Spherical Infinite Coordination Polymers (ICPS);391
20.1;Abstract;391
20.2;1 Introduction;392
20.3;2 Mechanism of Spherical ICP Particle Formation;393
20.4;3 Synthesis of ICPs;395
20.5;4 Characterization and Property Studies of ICPs;397
20.6;5 Applications of ICPs;401
20.6.1;5.1 Luminescent Sensors;401
20.6.2;5.2 Light-Emitting Devices;404
20.6.3;5.3 Bio-related Applications;405
20.6.4;5.4 Other Potential Applications;407
20.7;References;408
21;16 Current Perspective on Synthesis, Properties, and Application of Graphitic Carbon Nitride Related-Compounds;412
21.1;Abstract;412
21.2;1 Historical Perspective;412
21.3;2 Structure and Synthesis;415
21.4;3 Modifications to Synthesis;418
21.5;4 Applications;422
21.5.1;4.1 Photoredox Applications for Artificial Photosynthesis (Water Splitting and Photofixation of CO2);422
21.5.2;4.2 Environmental Decontamination;425
21.6;Acknowledgements;426
21.7;References;426
22;17 Chemical Modification of Polysaccharides and Applications in Strategic Areas;432
22.1;Abstract;432
22.2;1 Cellulose;433
22.2.1;1.1 Cellulose Derivatives, Some Properties and Potential Applications;434
22.3;2 Chitosan;439
22.3.1;2.1 Chitosan Derivatives, Some Properties and Potential Applications;440
22.4;3 Starch;450
22.4.1;3.1 Starch Derivatives, Some Properties and Potential Applications;451
22.5;4 Xanthan Gum;454
22.5.1;4.1 Xanthan Gum Derivatives, Some Properties and Potential Applications;455
22.6;5 Carrageenan;458
22.6.1;5.1 Carrageenan Derivatives, Some Properties and Potential Applications;459
22.7;References;462
23;18 A TD-DFT Simulation on Organic Polymer: The Case of PEDOT;472
23.1;Abstract;472
23.2;1 Introduction;473
23.2.1;1.1 Photovoltaic Devices;473
23.2.2;1.2 Charge Carriers in Organic Semiconductors;474
23.2.3;1.3 Density Functional Theory;475
23.2.4;1.4 Time-Dependent Density Functional Theory;476
23.2.5;1.5 Semi-empirical Methods;477
23.3;2 Theoretical Methodology;478
23.3.1;2.1 PM6 and DFT Electronic Structure;478
23.3.2;2.2 TD-DFT Single Excitation Calculations;478
23.4;3 Results and Discussion;479
23.4.1;3.1 Geometry Optimization;479
23.4.2;3.2 DFT Single Point Energy Calculation;479
23.4.3;3.3 Potential Energy Surface (PES) from DFT;480
23.4.4;3.4 Density of States Analysis (DOS);481
23.4.5;3.5 TD-DFT Single Excitation;483
23.4.6;3.6 Band-Gap Energy Calculation;485
23.5;4 Conclusions;488
23.6;Acknowledgements;488
23.7;References;488
24;19 Magnetic Properties of Conducting Polymers;491
24.1;Abstract;491
24.2;1 Introduction;492
24.3;2 Intrinsic Magnetic Behavior in Conducting Polymers;493
24.4;3 Effects of Metals and Oxides in the Magnetic Behavior of Conducting Polymers;499
24.5;4 Final Remarks;504
24.6;Acknowledgements;505
24.7;References;505
25;20 Revised Fundamental Properties and Crystal Engineering of Spinel Ferrite Nanoparticles;509
25.1;Abstract;509
25.2;1 Introduction;509
25.3;2 The Crystalline Structure of Ferrite;512
25.4;3 Method of Preparation and Characterization;512
25.4.1;3.1 Preparation Methods;512
25.4.2;3.2 Physical Characterization;515
25.5;4 Effects of Morphology on the Magnetic, Photocatalytic and Optical Properties of Spinel Ferrite;517
25.6;5 Effects of Doping on the Magnetic, Photocatalytic and Optical Properties of Spinel Ferrite;519
25.7;6 Conclusion;523
25.8;References;524




