Buch, Englisch, 199 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g
Buch, Englisch, 199 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 324 g
Reihe: Compact Textbooks in Mathematics
ISBN: 978-3-031-54907-6
Verlag: Springer International Publishing
This textbook explores applications of linear algebra in data science at an introductory level, showing readers how the two are deeply connected. The authors accomplish this by offering exercises that escalate in complexity, many of which incorporate MATLAB. Practice projects appear as well for students to better understand the real-world applications of the material covered in a standard linear algebra course. Some topics covered include singular value decomposition, convolution, frequency filtering, and neural networks. Linear Algebra in Data Science is suitable as a supplement to a standard linear algebra course.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker