Kyan / Muneesawang / Jarrah | Unsupervised Learning | E-Book | sack.de
E-Book

E-Book, Englisch, 288 Seiten, E-Book

Reihe: IEEE Press Series on Computational Intelligence

Kyan / Muneesawang / Jarrah Unsupervised Learning

A Dynamic Approach

E-Book, Englisch, 288 Seiten, E-Book

Reihe: IEEE Press Series on Computational Intelligence

ISBN: 978-1-118-87534-6
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



A new approach to unsupervised learning
Evolving technologies have brought about an explosion ofinformation in recent years, but the question of how suchinformation might be effectively harvested, archived, and analyzedremains a monumental challenge--for the processing of suchinformation is often fraught with the need for conceptualinterpretation: a relatively simple task for humans, yet an arduousone for computers.
Inspired by the relative success of existing popular research onself-organizing neural networks for data clustering and featureextraction, Unsupervised Learning: A Dynamic Approachpresents information within the family of generative,self-organizing maps, such as the self-organizing tree map (SOTM)and the more advanced self-organizing hierarchical variance map(SOHVM). It covers a series of pertinent, real-world applicationswith regard to the processing of multimedia data--from itsrole in generic image processing techniques, such as the automatedmodeling and removal of impulse noise in digital images, toproblems in digital asset management and its various roles infeature extraction, visual enhancement, segmentation, and analysisof microbiological image data.
Self-organization concepts and applications discussedinclude:
* Distance metrics for unsupervised clustering
* Synaptic self-amplification and competition
* Image retrieval
* Impulse noise removal
* Microbiological image analysis
Unsupervised Learning: A Dynamic Approach introduces anew family of unsupervised algorithms that have a basis inself-organization, making it an invaluable resource forresearchers, engineers, and scientists who want to create systemsthat effectively model oppressive volumes of data with little or nouser intervention.
Kyan / Muneesawang / Jarrah Unsupervised Learning jetzt bestellen!

Weitere Infos & Material


MATTHEW KYAN received his Ph.D. in Electrical Engineeringin 2007 from the University of Sydney, Australia, winning theSiemens National Prize for Innovation for his work with 3-Dconfocal imaging. He is currently an Assistant Professor at RyersonUniversity, Toronto, Canada.
PAISARN MUNEESAWANG received his Ph.D. from the school ofElectrical and Information Engineering at the University of Sydneyin 2002. He is currently an Associate Professor at NaresuanUniversity.
KAMBIZ JARRAH received his B.Eng. (with honors) in 2004and M.A.Sc. in 2006, both in Electrical Engineering, from RyersonUniversity.
LING GUAN is a Canada Research Chair in Multimedia andComputer Technology and a Professor in Electrical and ComputerEngineering at Ryerson University, Canada.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.