Buch, Englisch, 282 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 436 g
Buch, Englisch, 282 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 436 g
Reihe: Chapman and Hall/CRC Financial Mathematics Series
ISBN: 978-1-032-20432-1
Verlag: Chapman and Hall/CRC
Features
- Useful for practitioners and quants in the financial industry who need to make choices between various pricing models of variance derivatives
- Fabulous resource for researchers interested in pricing and hedging issues of variance derivatives and VIX products
- Can be used as a university textbook in a topic course on pricing variance derivatives
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Anlagen & Wertpapiere
- Mathematik | Informatik EDV | Informatik Informatik Mensch-Maschine-Interaktion Informationsarchitektur
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Wirtschaftswissenschaften Finanzsektor & Finanzdienstleistungen Finanzsektor & Finanzdienstleistungen: Allgemeines
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenbankdesign & Datenbanktheorie
Weitere Infos & Material
1. Volatility Trading and Variance Derivatives. 1.1. Implied Volatility and Local Volatility. 1.2. Volatility Trading using Options. 1.3. Derivatives on Discrete Realized Variance. 1.4. Replication of Variance Swaps. 1.5. Practical Implementation of Replication: Finite Strikes and Discrete Monitoring. Appendix. 2. Lévy Processes and Stochastic Volatility Models. 2.1. Compound Poisson process. 2.2. Jump-diffusion Models. 2.3. Lévy Processes. 2.4. Time-changed Lévy Processes. 2.5. Stochastic Volatility Models with Jumps. 2.6. Affine Jump-diffusion Stochastic Volatility Models. 2.7. 3/2 Stochastic Volatility Model. Appendix. 3. VIX Derivatives Under Consistent Models and direct Models. 3.1. VIX, Variance Swap Rate and VIX Derivatives. 3.2. Pricing VIX Derivatives Under Consistent Models. 3.3. Direct Modeling of VIX. Appendix. 4. Swap products on discrete Variance and Volatility. 4.1. Direct Expectation of Square of Log Return. 4.2. Nested Expectation via Partial Integro-differential Equation. 4.3. Moment Generating Function Methods. 4.4. Variance Swaps Under Time-changed Lévy Processes. Appendix. 5. Options on discrete realized Variance. 5.1. Adjustment for Discretization Effect via Lognormal Approximation. 5.2. Normal Approximation to Conditional Distribution of Discrete Realized Variance. 5.3. Partially Exact and Bounded Approximation for Options on Discrete Realized Variance. 5.4. Small Time Asymptotic Approximation. 6 Timer options. 6.1. Model Formulation. 6.2. Pricing Perpetual Timer Options. 6.3. Finite Maturity Discrete Timer Options. Appendix. Bibliography. Index.