E-Book, Englisch, 274 Seiten
Reihe: Control Engineering
Kwatny / Miu-Miller Power System Dynamics and Control
1. Auflage 2016
ISBN: 978-0-8176-4674-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 274 Seiten
Reihe: Control Engineering
ISBN: 978-0-8176-4674-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Whereas power systems have traditionally been designed with a focus on protecting them from routine component failures and atypical user demand, we now also confront the fact that deliberate attack intended to cause maximum disruption is a real possibility. In response to this changing environment, new concepts and tools have emerged that address many of the issues facing power system operation today. This book is aimed at introducing these ideas to practicing power systems engineers, control systems engineers interested in power systems, and graduate students in these areas. The ideas are examined with an emphasis on how they can be applied to improve our understanding of power system behavior and help design better control systems. The book is supplemented by a Mathematica package enabling readers to work out nontrivial examples and problems. Also included is a set of Mathematica tutorial notebooks providing detailed solutions of the worked examples in the text. In addition to Mathematica, simulations are carried out using Simulink with Stateflow.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Contents;9
3;1 Introduction;12
3.1;1.1 Goals and Motivation;12
3.2;1.2 Content;13
4;2 Basics of Electricity and Magnetism;15
4.1;2.1 Introduction;15
4.2;2.2 The Electric Field;15
4.3;2.3 The Magnetic Field;17
4.4;2.4 Maxwell's Equations;19
5;3 Electric Circuits and Devices;26
5.1;3.1 Introduction;26
5.2;3.2 Circuits and Circuit Elements;26
5.3;3.3 Network Modeling;30
5.4;3.4 The Incidence Matrix and Tellegen's Theorem;35
5.5;3.5 Generalized Lagrange Equations;37
5.5.1;3.5.1 Introduction;37
5.5.2;3.5.2 State Variables;40
5.5.3;3.5.3 Other Forms of Lagrange Equations;45
5.5.4;3.5.4 Excess Elements;59
5.6;3.6 Coupled Circuits and Electromechanical Devices;60
6;4 AC Power Systems;71
6.1;4.1 Introduction;71
6.2;4.2 Basics Concepts of AC Networks;72
6.2.1;4.2.1 Impedance Models of Linear Networks;72
6.2.2;4.2.2 Active and Reactive Power;74
6.2.3;4.2.3 Multi-port Networks;77
6.2.4;4.2.4 Single-Phase Machines;83
6.2.5;4.2.5 Transmission Lines and Transformers;87
6.3;4.3 Three-Phase AC Systems;92
6.3.1;4.3.1 Principles of Three-Phase Transmission;92
6.3.2;4.3.2 Three-Phase Synchronous Machines;93
6.4;4.4 Balanced Three-Phase AC Power Networks;100
6.4.1;4.4.1 Synchronous Generator in Steady State;101
6.4.2;4.4.2 Synchronous Machine Simplified Dynamic Model;102
6.4.3;4.4.3 Power Flow Equations;108
7;5 Power System Dynamics: Foundations;114
7.1;5.1 Introduction;114
7.2;5.2 Preliminaries;114
7.3;5.3 Ordinary Differential Equations;117
7.3.1;5.3.1 Existence and Uniqueness;117
7.3.2;5.3.2 Invariant Sets;122
7.4;5.4 Lyapunov Stability;123
7.4.1;5.4.1 Autonomous Systems;123
7.4.2;5.4.2 Basic Stability Theorems;125
7.4.3;5.4.3 First Integrals and Chetaev's Method;135
7.4.4;5.4.4 Remarks on Noether's Theorem;137
7.4.5;5.4.5 Stable, Unstable, and Center Manifolds;138
7.5;5.5 Analysis of Power System Stability;142
7.5.1;5.5.1 Properties of Classical Power System Models;143
7.5.2;5.5.2 Systems with Transfer Conductances;151
8;6 Power System Dynamics: Bifurcation Behavior;161
8.1;6.1 Introduction;161
8.2;6.2 Systems Described by Differential-Algebraic Equations;161
8.3;6.3 Basic Properties of DAEs;162
8.4;6.4 Singularities and Bifurcations of DAEs;163
8.5;6.5 Bifurcation of Flows Near Equilibria;166
8.5.1;6.5.1 Equivalence of Flows and Structural Stability;166
8.5.2;6.5.2 Bifurcation Points;167
8.5.3;6.5.3 Genericity;168
8.5.4;6.5.4 Normal Forms;169
8.5.5;6.5.5 Deformations and Unfoldings;171
8.5.6;6.5.6 Deformations and Unfoldings in Other Contexts;172
8.6;6.6 Numerical Computation;174
8.6.1;6.6.1 Static Bifurcation Points;174
8.6.2;6.6.2 Hopf Bifurcation;181
8.7;6.7 Applications;187
9;7 Elements of Power Systems Control;196
9.1;7.1 Introduction;196
9.2;7.2 Primary Voltage Control;196
9.2.1;7.2.1 Excitation Systems;197
9.3;7.3 Load Frequency Control;202
9.4;7.4 Automatic Generation Control (AGC);207
9.4.1;7.4.1 Elements of the Classical AGC Problem;209
9.4.2;7.4.2 AGC Control Strategies;211
9.4.3;7.4.3 Coordination of Economic Dispatch and AGC;219
10;8 Power System Management;224
10.1;8.1 Introduction;224
10.2;8.2 Problem Definition;226
10.2.1;8.2.1 Modeling;226
10.2.2;8.2.2 The Control Problem;228
10.3;8.3 Logical Specification to IP Formulas;229
10.3.1;8.3.1 Logical Modeling Language;229
10.3.2;8.3.2 Transformation to IP Formulas;230
10.3.3;8.3.3 Implementation;230
10.4;8.4 Constructing the Optimal Solution;231
10.5;8.5 Example: Load Shedding;233
10.5.1;8.5.1 Network and Load Dynamics;233
10.5.2;8.5.2 System Operation;234
10.5.3;8.5.3 The Optimal Control Problem Without OLTC, n=1;236
10.5.4;8.5.4 Incorporating Time Delays;238
10.6;8.6 Induction Motor Load with UPS;239
10.6.1;8.6.1 Dynamics;240
10.6.2;8.6.2 IP Formulas for UPS System;243
10.6.3;8.6.3 Optimal Control;243
10.7;8.7 Ship Integrated Electric Power System;245
10.7.1;8.7.1 The Fuel Consumption Model;247
10.7.2;8.7.2 Optimal Response to Contingencies;248
10.7.3;8.7.3 Example;252
11;Appendix AShip Hybrid Electric Propulsion System;255
12;Appendix BComputational Tools;259
13; References;263
14;Index;272




