Kuroda / Freudenburg / Onoda | Polynomial Rings and Affine Algebraic Geometry | Buch | 978-3-030-42135-9 | sack.de

Buch, Englisch, Band 319, 315 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 658 g

Reihe: Springer Proceedings in Mathematics & Statistics

Kuroda / Freudenburg / Onoda

Polynomial Rings and Affine Algebraic Geometry

PRAAG 2018, Tokyo, Japan, February 12¿16
1. Auflage 2020
ISBN: 978-3-030-42135-9
Verlag: Springer International Publishing

PRAAG 2018, Tokyo, Japan, February 12¿16

Buch, Englisch, Band 319, 315 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 658 g

Reihe: Springer Proceedings in Mathematics & Statistics

ISBN: 978-3-030-42135-9
Verlag: Springer International Publishing


This proceedings volume gathers selected, peer-reviewed works presented at the Polynomial Rings and Affine Algebraic Geometry Conference, which was held at Tokyo Metropolitan University on February 12-16, 2018. Readers will find some of the latest research conducted by an international group of experts on affine and projective algebraic geometry. The topics covered include group actions and linearization, automorphism groups and their structure as infinite-dimensional varieties, invariant theory, the Cancellation Problem, the Embedding Problem, Mathieu spaces and the Jacobian Conjecture, the Dolgachev-Weisfeiler Conjecture, classification of curves and surfaces, real forms of complex varieties, and questions of rationality, unirationality, and birationality. These papers will be of interest to all researchers and graduate students working in the fields of affine and projective algebraic geometry, as well as on certain aspects of commutative algebra, Lie theory, symplectic geometry andStein manifolds.
Kuroda / Freudenburg / Onoda Polynomial Rings and Affine Algebraic Geometry jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Ciliberto, C. and Zaidenberg, M: On Fano schemes of complete intersections.- Daigle, D.: Locally nilpotent sets of derivations.- DeBondt, M. and Watanabe, J: On the theory of Gordan-Noether on homogeneous forms with zero Hessian.- Dubouloz, A. and Petitijean, C: Rational real algebraic models of compact di?erential surfaces with circle actions.- Freudenburg, G.: The super-rank of a locally nilpotent derivation of a polynomial ring.- Gurjar, R., Masuda, K., and Miyanishi, M: A?ne space ?brations.- Gurjar, R.: A graded domain is determined at its vertex: Applications to invariant theory.- Kojima, H.: Singularities of normal log canonical del Pezzo surfaces of rank one.- Moser-Jauslin, L.: O2(C)-vector bundles and equivariant real circle actions.- Nagamine, T.: On some su?cient conditions for polynomials to be closed polynomials over Domains.- Popov, V.: Variations on the theme of Zariski’s Cancellation Problem.- Takeda, Y.: Tango structures on curves in characteristic 2.- Tanimoto, R.: Exponential matrices of size ?ve-by-?ve.- Van den Essen, A.: Mathieu-Zhao Spaces and the Jacobian Conjecture.


Shigeru Kuroda is a Professor at Tokyo Metropolitan University, Japan. Holding a PhD (2003) from Tohoku University, Japan, his main research focuses are on affine algebraic geometry and polynomial ring theory.Nobuharu Onoda is a Professor at University of Fukui, Japan. He holds a PhD (1983) from Osaka University, Japan. His main research interests are in commutative algebra related to affine algebraic geometry.

Gene Freudenburg is a Professor at Western Michigan University, USA. He completed his PhD (1992) at Washington University, Saint Louis, USA. His chief research interests are in commutative algebra and affine algebraic geometry. He authored the Springer book “Algebraic Theory of Locally Nilpotent Derivations” (978-3-662-55348-0), now in its second edition.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.