Kurgan / Kihara | Protein Function Prediction | Buch | 978-1-0716-4661-8 | sack.de

Buch, Englisch, 360 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 901 g

Reihe: Methods in Molecular Biology

Kurgan / Kihara

Protein Function Prediction

Methods and Protocols
2. Auflage 2025
ISBN: 978-1-0716-4661-8
Verlag: Springer

Methods and Protocols

Buch, Englisch, 360 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 901 g

Reihe: Methods in Molecular Biology

ISBN: 978-1-0716-4661-8
Verlag: Springer


This fully updated volume explores a wide array of new and state-of-the-art tools and resources for protein function prediction. Beginning with in-depth overviews of essential underlying computational techniques, such as machine learning, multi-task learning, protein language models, and deep learning, the book continues by covering specific tools for protein function prediction, ranging from gene ontology-term predictions to the predictions of binding sites, protein localization and solubility, signal peptides, intrinsic disorder, and intrinsically disordered binding regions, as well as presenting databases that address protein moonlighting and protein binding. Written for the highly successful series, chapters include introductions to their respective topics, step-by-step instructions on how to use software and web resources, use cases, and tips on troubleshooting and avoiding known pitfalls.

Authoritative and up-to-date, helps readers to understand and appreciate this vibrant and growing research area and guides in the quest to identify and use the best computational methods and resources for their projects.

Kurgan / Kihara Protein Function Prediction jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


Computational Prediction of Protein Functional Annotations.- Machine Learning for Protein Function Prediction.- Graph Neural Network-Based Approaches for Protein Function Prediction.- Multi-Task Learning-Based Approaches for Protein Function Prediction.- A Survey of Deep Learning Methods and Tools for Protein Binding Site Prediction.- A Survey of Current Status in AI-Based Topology Prediction of Transmembrane Proteins.- NetGO 3.0: A Recent Protein Function Prediction Tool Based on Protein Language Model.- Predicting Protein Functions with Function-Aware Domain Embeddings Using Domain-PFP.- Integrating Gene Ontology Relationships for Protein Function Prediction Using PFresGO.- Annotating Genomes with DeepGO Protein Function Prediction Tools.- An Online Server for Geometry-Aware Protein Function Annotations through Predicted Structure.- Exploring Binding Sites on Proteins for Function Prediction Using the PoSSuM Databases.- Comprehensive Prediction of Protein Localization and Signal Peptides Using MULocDeep.- A Benchmarking Platform for Assessing Protein Language Models on Function-Related Prediction Tasks.- Prediction of Intrinsic Disorder Functions with DEPICTER2.- Prediction of Disordered Linear Interacting Peptides with CLIP.- Prediction of Intrinsically Disordered Lipid Binding Residues with DisoLipPred.- NaviGO: An Interactive Tool for Gene Ontology Functional Analysis with Free Text GO Summaries.- Using the MoonProt Database for Understanding Protein Functions.- Illustrative Features and Utilities of MPAD: Thermodynamic Database for Membrane Protein-Protein Complexes.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.