Discovering Symbolic Rules from Neural Processed Data
Buch, Englisch, 388 Seiten, Paperback, Format (B × H): 178 mm x 254 mm, Gewicht: 779 g
ISBN: 978-1-4613-5204-4
Verlag: Springer US
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Neurowissenschaften, Kognitionswissenschaft
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
Weitere Infos & Material
1 The Statistical Bases of Learning.- 2 PAC Meditation on Boolean Formulas.- 3 Learning Regression Functions.- 4 Cooperative Games in a Stochastic Environment.- 5 If-Then-Else and Rule Extraction from Two Sets of Rules.- 6 Extracting Interpretable Fuzzy Knowledge from Data.- 7 Fuzzy Methods for Simplifying a Boolean Formula Inferred from Examples.- 8 On Mapping and Maps in the Central Nervous System.- 9 Molecular Basis of Learning and Memory: Modelling Based on Receptor Mosaics.- 10 Physiological and Logical Brain Functionalities: a Hypothesis for a Self-Referential Brain Activity.- 11 Modeling of Spontaneous Bursting Activity Observed in In-Vitro Neural Networks.- 12 The Importance of Data for Training Intelligent Devices.- 13 Learning and Checking Confidence Regions for the Hazard Function of Biomedical data.- 14 Integrating Symbol-Oriented and Sub-Symbolic Reasoning Methods into Hybrid Systems.- 15 From the Unconscious to the Conscious.- 16 On Neural Networks, Connectionism and Brain-like Learning.- 17 Adaptive Computation in Data Structures and Webs.- 18 IUANT: An Updating Method for Supervised Neural Structures.