Kurdila / Zabarankin | Convex Functional Analysis | E-Book | sack.de
E-Book

E-Book, Englisch, 243 Seiten, eBook

Reihe: Systems & Control: Foundations & Applications

Kurdila / Zabarankin Convex Functional Analysis

E-Book, Englisch, 243 Seiten, eBook

Reihe: Systems & Control: Foundations & Applications

ISBN: 978-3-7643-7357-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Overview of Book This book evolved over a period of years as the authors taught classes in var- tional calculus and applied functional analysis to graduatestudents in engineering and mathematics. The book has likewise been in?uenced by the authors’ research programs that have relied on the application of functional analytic principles to problems in variational calculus, mechanics and control theory. One of the most di?cult tasks in preparing to utilize functional, convex, and set-valued analysis in practical problems in engineering and physics is the inti- dating number of de?nitions, lemmas, theorems and propositions that constitute thefoundationsoffunctionalanalysis. Itcannotbeoveremphasizedthatfunctional analysis can be a powerful tool for analyzing practical problems in mechanics and physics. However, many academicians and researchers spend their lifetime stu- ing abstract mathematics. It is a demanding ?eld that requires discipline and devotion. It is a trite analogy that mathematics can be viewed as a pyramid of knowledge, that builds layer upon layer as more mathematical structure is put in place. The di?culty lies in the fact that an engineer or scientist typically would like to start somewhere “above the base” of the pyramid. Engineers and scientists are not as concerned, generally speaking, with the subtleties of deriving theorems axiomatically. Rather, they are interested in gaining a working knowledge of the applicability of the theory to their ?eld of interest.
Kurdila / Zabarankin Convex Functional Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Classical Abstract Spaces in Functional Analysis.- Linear Functionals and Linear Operators.- Common Function Spaces in Applications.- Differential Calculus in Normed Vector Spaces.- Minimization of Functionals.- Convex Functionals.- Lower Semicontinuous Functionals.


Preface ( P. 12)

Overview of Book

This book evolved over a period of years as the authors taught classes in variational calculus and applied functional analysis to graduate students in engineering and mathematics. The book has likewise been influenced by the authors’ research programs that have relied on the application of functional analytic principles to problems in variational calculus, mechanics and control theory.

One of the most difficult tasks in preparing to utilize functional, convex, and set-valued analysis in practical problems in engineering and physics is the intimidating number of de.nitions, lemmas, theorems and propositions that constitute the foundations of functional analysis. It cannot be overemphasized that functional analysis can be a powerful tool for analyzing practical problems in mechanics and physics.

However, many academicians and researchers spend their lifetime studying abstract mathematics. It is a demanding field that requires discipline and devotion. It is a trite analogy that mathematics can be viewed as a pyramid of knowledge, that builds layer upon layer as more mathematical structure is put in place. The difficulty lies in the fact that an engineer or scientist typically would like to start somewhere "above the base" of the pyramid. Engineers and scientists are not as concerned, generally speaking, with the subtleties of deriving theorems axiomatically. Rather, they are interested in gaining a working knowledge of the applicability of the theory to their field of interest.

The content and structure of the book reffects the sometimes conflicting requirements of researchers or students who have formal training in either engineering or applied mathematics. Typically, before taking this course, those trained within an engineering discipline might have a working knowledge of fundamental topics in mechanics or control theory. Engineering students may be perfectly comfortable with the notion of the stress distribution in an elastic continuum, or the velocity field in an incompressible flow.

The formulation of the equations governing the static equilibrium of elastic bodies, or the structure of the Navier-Stokes Equations for incompressible flow, are often familiar to them. This is usually not the case for first year graduate students trained in applied mathematics. Rather, these students will have some familiarity with real analysis or functional analysis. The fundamental theorems of analysis including the Open Mapping Theorem, the Hahn-Banach Theorem, and the Closed Graph Theorem will constitute the foundations of their training in many cases.

Coupled with this essential disparity in the training to which graduate students in these two disciplines are exposed, it is a fact that formulations and solutions of modern problems in control and mechanics are couched in functional analytic terms. This trend is pervasive. Thus, the goal of the present text is admittedly ambitious. This text seeks to synthesize topics from abstract analysis with enough recent problems in control theory and mechanics to provide students from both disciplines with a working knowledge of functional analysis.

Organization

This work consists of two volumes. The primary thrust of this series is a discussion of how convex analysis, as a specific subtopic in functional analysis, has served to unify approaches in numerous problems in mechanics and control theory. Every attempt has been made to make the series self-contained. The first book in this series is dedicated to the fundamentals of convex functional analysis.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.