E-Book, Englisch, 338 Seiten
Kumar / Kalia / Swart Conducting Polymer Hybrids
1. Auflage 2016
ISBN: 978-3-319-46458-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 338 Seiten
Reihe: Springer Series on Polymer and Composite Materials
ISBN: 978-3-319-46458-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents a comprehensive survey about conducting polymers and their hybrids with different materials. It highlights the topics pertinent to research and development in academia and in the industry. The book thus discusses the preparation and characterization of these materials, as well as materials properties and their processing. The current challenges in the field are addressed, and an outline on new and even futuristic approaches is given.
'Conducting Polymer Hybrids' is concerned with a fascinating class of materials with the promise for wide-ranging applications, including energy generation and storage, supercapacitors, electronics, display technologies, sensing, environmental and biomedical applications. The book covers a large variety of systems: one-, two-, and three-dimenstional composites and hybrids, mixed at micro- and nanolevel.
Vijay Kumar is currently a postdoctoral research fellow in the Department of Physics at the University of the Free State. His current research interests are in rare-earth doped up-conversion nanomaterials. He has published more than 40 research papers in different peer reviewed international journals.
Susheel Kalia is Associate Professor & Head of the Department of Chemistry at Army Cadet College Wing of the Indian Military Academy Dehradun. He was visiting researcher in the Department of Civil, Chemical, Environmental and Materials Engineering at University of Bologna, Italy, in 2013, and held a position as Assistant Professor in the Department of Chemistry, Bahra University, Solan, India until 2015. His research interests include polymeric composites, bio- and nanocomposites, conducting polymers, nanofibers, nanoparticles, hybrid materials, hydrogels, and cryogenics, and are documented in more than 65 research papers in international journals, over 80 conference contributions (incl. numerous invited contributions) and several book chapters. Kalia is an experienced book editor, and he has edited a number of successful books (with Springer), such as 'Cellulose Fibers: Bio- and Nano-Polymer Composites', 'Polymers at Cryogenic Temperatures', or 'Polysaccharide Based Graft Copolymers'.
Hendrik C. Swart is senior professor in the Department of Physics at the University of the Free State. His research focus is on solid state luminescent and advanced materials, with a main objective to develop micro- and nanophosphors for applications in infrastructure and high technology flat panel displays. He has more than 270 publications in international peer reviewed journals, 40 peer reviewed conference proceedings, and 3 book chapters and books as well as 400 national and international conference contributions.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;1 Conducting Polymer Nanocomposites: Recent Developments and Future Prospects;7
2.1;Abstract;7
2.2;1 Introduction;8
2.3;2 Background;10
2.3.1;2.1 Percolation Theory;10
2.3.2;2.2 Conduction Mechanism;11
2.3.3;2.3 Characterization of Conductive Network in CPCs;11
2.4;3 The Design for High-Performance CPCs;12
2.4.1;3.1 Conductive Fillers;12
2.4.2;3.2 Polymer Matrix;13
2.4.3;3.3 The Choice of Fabrication Methods;14
2.4.3.1;3.3.1 Melting Blending;15
2.4.3.2;3.3.2 Solution Mixing;16
2.4.3.3;3.3.3 In Situ Polymerization;17
2.5;4 The Strategy for Controlling the Morphology of Conductive Filler Network in CPCs;19
2.5.1;4.1 Morphology Control by Polymer Blends;19
2.5.2;4.2 Morphology Control by Thermal Annealing;21
2.5.3;4.3 Morphology Control by Shear Force;23
2.5.4;4.4 Morphology Control by Latex Technology;23
2.5.5;4.5 Morphology Control by Mixing Different Nanofillers;25
2.5.6;4.6 Morphology Control Through Other Methods;28
2.6;5 Applications of CPCs;28
2.6.1;5.1 Sensors;28
2.6.1.1;5.1.1 Temperature Sensors;29
2.6.1.2;5.1.2 Strain Sensor;30
2.6.1.3;5.1.3 Chemical Sensor;31
2.6.1.4;5.1.4 Stretchable Conductor;32
2.6.1.5;5.1.5 Thermoelectric Material;35
2.6.1.6;5.1.6 Electrodes for Energy Storage;36
2.6.1.7;5.1.7 Biomedical Application;37
2.7;6 Conclusion and Outlook;39
2.8;Acknowledgments;41
2.9;References;41
3;2 Magnetic Nanoparticles-Based Conducting Polymer Nanocomposites;51
3.1;Abstract;51
3.2;1 Introduction;51
3.3;2 Synthetic Strategies;54
3.3.1;2.1 Mixing or Blending Pre-synthesized Conducting Polymers and Magnetic NPs;58
3.3.2;2.2 In Situ Synthesis of Magnetic Nanoparticles into Conducting Polymers;59
3.3.3;2.3 In Situ Polymerization in the Presence of Magnetic Nanoparticles;60
3.3.4;2.4 Simultaneous Polymerization and Synthesis of Magnetic Nanoparticles;63
3.4;3 Magneto-Electrical Properties;63
3.4.1;3.1 Magnetic Nanoparticles;63
3.4.2;3.2 Conducting Polymers;66
3.4.2.1;3.2.1 Characteristics of the Most Common Conducting Polymers;67
3.4.2.1.1;Polyaniline;67
3.4.2.1.2;Polythiophene;68
3.4.2.1.3;Polypyrrole;68
3.4.3;3.3 Magneto-Electrical Properties of the Composites;68
3.5;4 Applications;73
3.5.1;4.1 Electromagnetic Shielding and Microwave Absorbing Materials;73
3.5.2;4.2 Polymer Solar Cells;76
3.5.3;4.3 Sensors;77
3.6;5 Concluding Remarks and Future Perspectives;79
3.7;Acknowledgments;80
3.8;References;80
4;3 Polypyrrole Nanotubes-Silver Nanoparticles Hybrid Nanocomposites: Dielectric, Optical, Antimicrobial and Haemolysis Activity Study;87
4.1;Abstract;87
4.2;1 Introduction;88
4.3;2 Present Status and Future Prospects of Conducting Polymer-based Hybrid Nanocomposites;92
4.4;3 Conducting Polymer-Based Hybrid Nanocomposites;93
4.4.1;3.1 Nanocomposites with Metal Nanoparticles;93
4.4.2;3.2 Nanocomposites with Metal–Oxide Nanoparticles;95
4.4.3;3.3 Nanocomposites with Carbon Materials;96
4.4.4;3.4 Conducting Polymer Based Ternary Nanocomposites;98
4.5;4 Properties and Applications of Conducting Polymer Based Hybrids;100
4.5.1;4.1 Nanoelectronics;100
4.5.2;4.2 Energy Storage Devices;100
4.5.3;4.3 Sensors;101
4.5.4;4.4 Microwave Absorption and EMI Shielding;104
4.5.5;4.5 Biomedical Applications;104
4.6;5 Surface-Enhanced Raman Spectroscopy Studies of Metal-Polypyrrole Nanocomposites;106
4.7;6 Polypyrrole Nanotubes-Silver Nanoparticles Hybrid Nanocomposites;107
4.7.1;6.1 Synthesis;107
4.7.1.1;6.1.1 Synthesis of Polypyrrole Nanotubes;107
4.7.1.2;6.1.2 Preparation of Polypyrrole Nanotubes-Silver Nanoparticles Nanocomposites;108
4.7.2;6.2 Morphological Analysis;108
4.7.3;6.3 X-Ray Diffraction Study;109
4.7.4;6.4 UV–Vis Spectroscopy Study;110
4.7.5;6.5 Dielectric Spectroscopy;112
4.7.5.1;6.5.1 Permittivity Formalism;112
4.7.5.2;6.5.2 Modulus Formalism;113
4.7.6;6.6 Ac Conductivity Study;114
4.7.7;6.7 Antimicrobial Activity of the Nanocomposites;115
4.7.8;6.8 Haemolysis Activity Study;117
4.8;7 Conclusions;118
4.9;References;119
5;4 Conductive Polymer Composites Based on Carbon Nanomaterials;122
5.1;Abstract;122
5.2;1 Introduction;122
5.3;2 Brief History of Conductive Polymer and Their Composites;125
5.4;3 Some Important Terms Related to Conductive Polymers and Their Definitions;125
5.4.1;3.1 Some Most Studied Conductive Polymers;125
5.4.2;3.2 Composites;125
5.4.3;3.3 Nanomaterials and Conducting Polymer Composites;127
5.5;4 Carbon Nanotube (CNT)-Based Conductive Polymer Composites;128
5.5.1;4.1 Methods of Synthesis for CNTs-Based Conducting Polymers;129
5.5.2;4.2 Characterization Techniques;131
5.5.3;4.3 Application of CNT-Based Conducting Polymer Nanocomposites;133
5.5.3.1;4.3.1 Supercapacitors;133
5.5.3.2;4.3.2 Fuel Cell Electrode;134
5.5.3.3;4.3.3 Electrochemical Actuators;135
5.5.3.4;4.3.4 Memory Devices;136
5.5.3.5;4.3.5 Field Emission Devices;136
5.5.3.6;4.3.6 Lithium Batteries;137
5.6;5 Graphene-Based Conductive Polymer Composites;138
5.6.1;5.1 Graphene;138
5.6.2;5.2 Graphene and Derivatives-Based Conducting Polymers;138
5.6.3;5.3 Various Approaches for the Synthesis of Graphene-Based Conducting Polymer;140
5.6.3.1;5.3.1 Solution and Melt Mixing Without Covalent Bonding;140
5.6.3.2;5.3.2 In Situ Polymerization Without Covalent Bonding;142
5.6.3.3;5.3.3 Characterization Techniques;143
5.6.3.4;5.3.4 Application of Graphene-Based Conducting Polymers;143
5.7;6 Conclusion and Future Prospects;143
5.8;References;144
6;5 Clay-Based Conducting Polymer Nanocomposites;148
6.1;Abstract;148
6.2;1 Introduction;149
6.3;2 Nanocomposites;150
6.3.1;2.1 Clays;150
6.3.2;2.2 Polymeric Nanocomposites;152
6.3.2.1;2.2.1 Preparation of Nanocomposites;155
6.3.3;2.3 Conducting Polymer Nanocomposites;159
6.3.3.1;2.3.1 Conducting Polymer;160
6.3.3.1.1;Polyaniline;162
6.4;3 Applied Study: PAni and MMT;163
6.5;4 Conclusions;165
6.6;References;165
7;6 A Review of Supercapacitor Energy Storage Using Nanohybrid Conducting Polymers and Carbon Electrode Materials;169
7.1;Abstract;169
7.2;1 Introduction;170
7.3;2 Supercapacitor Energy Storage Mechanisms;170
7.4;3 CPs and Carbon Materials in Energy Storage;173
7.5;4 CP/Carbon Hybrids as Electrodes for Supercapacitor;177
7.5.1;4.1 CP/Activated Carbon Hybrids;177
7.5.2;4.2 CP/Carbon Nanotube Hybrids;177
7.5.3;4.3 CP/Graphene Hybrids;178
7.5.4;4.4 CP Hybrids for Flexible Semisolid/Solid-State Supercapacitors;184
7.5.5;4.5 Equivalent Circuit Models;187
7.6;5 Conclusion;191
7.7;Acknowledgments;191
7.8;References;192
8;7 Conducting Polymer Hydrogels and Their Applications;197
8.1;Abstract;197
8.2;1 Introduction;198
8.2.1;1.1 Hydrogels;199
8.2.2;1.2 Classifications of Hydrogels;200
8.2.2.1;1.2.1 Classification Based on Source;200
8.2.2.2;1.2.2 Classification According to Polymeric Composition;200
8.2.2.3;1.2.3 Classification Based on Structural Feature;202
8.2.2.4;1.2.4 Classification Based on Physical Appearance;202
8.2.2.5;1.2.5 Classification Based on Ionic Charges;202
8.2.2.6;1.2.6 Classification Based on Type of Cross-Linking;202
8.2.3;1.3 Synthesis of Graft Copolymers;202
8.2.4;1.4 Characteristics of Hydrogels;203
8.3;2 Conducting Polymers;204
8.4;3 Conducting Hydrogels;205
8.4.1;3.1 Conducting Hydrogel Based upon Conducting Polymer;206
8.4.2;3.2 Conducting Hydrogel Based upon Metal/Nanoparticles;207
8.4.3;3.3 Method of Synthesis of Conducting Hydrogels;207
8.4.3.1;3.3.1 Chemically Cross-Linked Conductive Hydrogels;207
8.4.3.2;3.3.2 Radiation Cross-Linked Conductive Hydrogels;209
8.5;4 Characterization;210
8.6;5 Applications of Conducting Hydrogels;211
8.6.1;5.1 Drug Delivery Devices;212
8.6.2;5.2 Biomedical Applications;213
8.6.3;5.3 Agricultural and Horticultural;214
8.6.4;5.4 Wastewater Treatment;216
8.6.5;5.5 Bioelectrodes;218
8.7;6 Conclusion and Future Perspective;220
8.8;References;220
9;8 Conducting Polymer Nanocomposites for Sensor Applications;226
9.1;Abstract;226
9.2;1 Introduction to Sensors/Biosensors;227
9.3;2 Conducting Polymers;231
9.4;3 Nanostructure Conducting Polymers;233
9.4.1;3.1 Hard Template Synthesis;234
9.4.2;3.2 Soft Template Synthesis;235
9.4.3;3.3 Electrospinning Method;236
9.5;4 Conducting Polymer Nanocomposites;238
9.5.1;4.1 Synthesis of Conducting Polymer Nanocomposites;239
9.5.2;4.2 Particulate (0D)-Reinforced Nanocomposites;240
9.5.3;4.3 Fiber (1D)-Reinforced Nanocomposites;243
9.5.4;4.4 Flake (2D)-Reinforced Nanocomposites;247
9.5.5;4.5 Multicomponents-Reinforced Nanocomposites;248
9.6;5 Conducting Polymer Nanocomposites for Sensors/Biosensors;250
9.6.1;5.1 Gas Sensing Application;251
9.6.2;5.2 Biosensing Application;257
9.7;6 Conclusion;268
9.8;References;268
10;9 Conducting Polymer Nanocomposite-Based Supercapacitors;271
10.1;Abstract;271
10.2;1 Introduction;272
10.3;2 Energy and Power Characteristics of Supercapacitors;272
10.3.1;2.1 Capacitance of an Electrode;272
10.3.2;2.2 Electrical Power and Energy of a Supercapacitor;276
10.3.3;2.3 Materials for Construction of Supercapacitors;279
10.3.4;2.4 Charge Storage Mechanisms;280
10.3.5;2.5 Electronically Conducting Polymer;281
10.3.6;2.6 Polypyrrole (PPy);283
10.3.7;2.7 Polyaniline (PAn);284
10.3.8;2.8 Poly(3,4-Ethylenedioxythiophene) (PEDOT);284
10.3.9;2.9 The Necessity for ECP Nanocomposites;285
10.3.10;2.10 The Formation of ECP Nanocomposites;286
10.3.11;2.11 ECP–CNT Nanocomposites;288
10.3.12;2.12 ECP-Graphene Nanocomposite;292
10.3.13;2.13 ECP-Cellulose Nanocomposites;294
10.3.14;2.14 Prototypes and Devices;297
10.4;3 Comments;300
10.5;4 Conclusions;302
10.6;References;303
11;10 Composites Based on Conducting Polymers and Carbon Nanotubes for Supercapacitors;307
11.1;Abstract;307
11.2;1 Introduction;308
11.3;2 CNT Modifications with Polymers;310
11.4;3 Composites Based on CNTs and CPs for Supercapacitors;312
11.4.1;3.1 PPy–CNT Composites;313
11.4.2;3.2 PANi–CNT Composites;325
11.5;4 Summary, Conclusive Remarks and Future Perspectives;334
11.6;References;336




