Buch, Englisch, Band 204, 609 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1103 g
Reihe: Progress in Mathematics
Buch, Englisch, Band 204, 609 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1103 g
Reihe: Progress in Mathematics
ISBN: 978-0-8176-4227-3
Verlag: Birkhäuser Boston
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
Weitere Infos & Material
I. Kac-Moody Algebras: Basic Theory.- 1. Definition of Kac-Moody Algebras.- 2. Root Space Decomposition.- 3. Weyl Groups Associated to Kac-Moody Algebras.- 4. Dominant Chamber and Tits Cone.- 5. Invariant Bilinear Form and the Casimir Operator.- II. Representation Theory of Kac-Moody Algebras.- 1. Category $$\mathcal{O}$$.- 2. Weyl-Kac Character Formula.- 3. Shapovalov Bilinear Form.- III. Lie Algebra Homology and Cohomology.- 1. Basic Definitions and Elementary Properties.- 2. Lie Algebra Homology of n-: Results of Kostant-Garland-Lepowsky.- 3. Decomposition of the Category $$\mathcal{O}$$
and some Ext Vanishing Results.- 4. Laplacian Calculation.- IV. An Introduction to ind-Varieties and pro-Groups.- 1. Ind-Varieties: Basic Definitions.- 2. Ind-Groups and their Lie Algebras.- 3. Smoothness of ind-Varieties.- 4. An Introduction to pro-Groups and pro-Lie Algebras.- V. Tits Systems: Basic Theory.- 1. An Introduction to Tits Systems.- 2. Refined Tits Systems.- VI. Kac-Moody Groups: Basic Theory.- 1. Definition of Kac-Moody Groups and Parabolic Subgroups.- 2. Representations of Kac-Moody Groups.- VII. Generalized Flag Varieties of Kac-Moody Groups.- 1. Generalized Flag Varieties: Ind-Variety Structure.- 2. Line Bundles on $${\mathcal{X}^Y}$$.- 3. Study of the Group $${\mathcal{U}^ - }$$.- 4. Study of the Group $${\mathcal{G}^{\min }}$$
Defined by Kac-Peterson.- VIII. Demazure and Weyl-Kac Character Formulas.- 1. Cohomology of Certain Line Bundles on $${Z_\mathfrak{w}}$$.- 2. Normality of Schubert Varieties and the Demazure Character Formula.- 3. Extension of the Weyl-Kac Character Formula and the Borel-Weil-Bott Theorem.- IX. BGG and Kempf Resolutions.- 1. BGG Resolution: Algebraic Proof in the Symmetrizable Case.- 2. A Combinatorial Description of the BGG Resolution.- 3.Kempf Resolution.- X. Defining Equations of $$\mathcal{G}/\mathcal{P}$$ and Conjugacy Theorems.- 1. Quadratic Generation of Defining Ideals of $$\mathcal{G}/\mathcal{P}$$ in Projective Embeddings.- 2. Conjugacy Theorems for Lie Algebras.- 3. Conjugacy Theorems for Groups.- XI. Topology of Kac-Moody Groups and Their Flag Varieties.- 1. The Nil-Hecke Ring.- 2. Determination of $$\bar R$$.- 3. T-equivariant Cohomology of $$\mathcal{G}/\mathcal{P}$$.- 4. Positivity of the Cup Product in the Cohomology of Flag Varieties.- 5. Degeneracy of the Leray-Serre Spectral Sequence for the Fibration $${\mathcal{G}^{\min }} \to {\mathcal{G}^{\min }}/T$$.- XII. Smoothness and Rational Smoothness of Schubert Varieties.- 1. Singular Locus of Schubert Varieties.- 2. Rational Smoothness of Schubert Varieties.- XIII. An Introduction to Affine Kac-Moody Lie Algebras and Groups.- 1. Affine Kac-Moody Lie Algebras.- 2. Affine Kac-Moody Groups.- Appendix A. Results from Algebraic Geometry.- Appendix B. Local Cohomology.- Appendix C. Results from Topology.- Appendix D. Relative Homological Algebra.- Appendix E. An Introduction to Spectral Sequences.- Index of Notation.