Kumar / Chaudhary / Sharma | Radiation Effects in Polymeric Materials | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 417 Seiten

Reihe: Springer Series on Polymer and Composite Materials

Kumar / Chaudhary / Sharma Radiation Effects in Polymeric Materials


1. Auflage 2019
ISBN: 978-3-030-05770-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 417 Seiten

Reihe: Springer Series on Polymer and Composite Materials

ISBN: 978-3-030-05770-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



?This book provides an introduction of how radiation is processed in polymeric materials, how materials properties are affected and how the resulting materials are analyzed. It covers synthesis, characterization, or modification of important materials, e.g. polycarbonates, polyamides and polysaccharides, using radiation. For example, a complete chapter is dedicated to the characterization of biodegradable polymers irradiated with low and heavy ions. This book will be beneficial to all polymer scientists in the development of new macromolecules and to all engineers using these materials in applications. It summarizes the fundamental knowledge and latest innovations in research fields from medicine to space.

Dr. Vijay KumarDr. Vijay Kumar is an Assistant Professor at National Institute of Technology, Srinagar, J&K, India. He was a postdoc fellow in Professor Swart's group at the University of the Free State, South Africa from April 2013- December 2015. He received his Ph.D. (Physics/Material Science) from Sant Longowal Institute of Engineering and Technology, Longowal (Deemed University) in Collaboration with Inter University Accelerator Center (Formerly known as Nuclear Science Center), New Delhi. During the last eight years of his research career, he has published more than 75 research papers in many of the reputed international journals, which attracted more than 1910 citations. He has already edited 2 books for Springer and Wiley respectively. He is a reviewer for about 40 international and national professional journals in his field (or in related fields) And active as editorial board member He is a leading guest editor of Virtual Special Issue of VACUUM and Materials Today: Proceedings (both Elsevier). He has received the 'Teacher with Best Research Contribution Award' (Chandigarh University) And the Young Scientist Award under the fast track scheme of Department of Science and Technology (Ministry of Science and Technology, Government of India), New Delhi. member of Scientific Advisory Committee for Initiative for Research and Innovation in Science (IRIS) His current research involves the synthesis and spectroscopic investigations of rare earth/transitional metal ions doped nanomaterials, nanocomposites, and hybrid materials to make color tunable emission in solid-state lighting and white light LEDs. He is also working on the synthesis and characterization of a biomaterial with electro-conductive properties that could be used in biomedical applications with better biocompatibility. Dr. Babulal ChaudharyDr. Babulal Chaudhary has been working as Scientific Program Officer in Indo-US Science and Technology Forum, New Delhi.  He received his B.Sc. in Physics, Chemistry and Maths; M.Sc. in Electronics from University of Lucknow, Lucknow, Uttar Pradesh, India, M.Tech in Electronics and Communication from Uttar Pradesh Technical University, Lucknow. He has Obtain his Ph.D. in Physics, from University of Lucknow, Lucknow, Uttar Pradesh, India. His research interests include synthesis, and characterization of Thin Films, nanocomposites, Carbon based materials like CNT, Graphene Oxide (GO), rGO  for energy harvesting and storage. He has published more than 20 research papers in several international journals, along with more than 12 publications in proceedings of international/national conferences.Dr. Vishal SharmaDr. Vishal Sharma is presently working as an Assistant Professor, Institute of Forensic Science & Criminology, Panjab University, Chandigarh (INDIA). He has obtained his Ph.D. degree in Physics discipline from Kurukshetra University, Kurukshetra, India and Inter University Accelerator Centre (IUAC-an autonomous centre of UGC, GOI), New Delhi (INDIA) in 2007. He has performed series of experiments on Swift Heavy Ions at IUAC. He is the recipient of DAE Young scientist research award in the year 2011. His current research interest is in the study of Energy loss & energy loss straggling of heavy Ions in polymers, polymer nano-composites for different applications, development of inorganic nano-particles /nano phosphor in latent fingermark and lip mark detection for forensic applications, Chemometrics in forensic science and development of various methods for the analysis of trace exhibits in forensic science. Dr. Vishal Sharma is the author of over 50 scientific papers and four book chapters with maximum impact factor up to 8.5. He has delivered key note, invited talk, session chair and presented his work in various national & International Conferences. Dr. Kartikey VermaDr. Kartikey Verma has been working as Young Scientist Fellow (DST Young Scientist Fellow) in Department of Chemical Engineering at Indian Institute of Technology, Kanpur, India, He received his B.Sc. in Physics, Chemistry and Maths; M.Sc. in Electronics, and Ph.D. in Physics, from University of Lucknow, Lucknow, Uttar Pradesh, India. His research interests include processing, and characterization of Thin Films, polymer matrix composites, nanocomposites, bio-based polymers and graphene based materials for energy harvesting and storage. He has published more than 15 research papers in several international journals, along with more than 20 publications in proceedings of international/national conferences.  

Kumar / Chaudhary / Sharma Radiation Effects in Polymeric Materials jetzt bestellen!

Weitere Infos & Material


1;Contents;6
2;About the Editors;8
3;1 Effects of Radiation on the Environment;10
3.1;Abstract;10
3.2;1 Introduction;11
3.3;2 Discovery of Radioactivity;12
3.4;3 Types and Sources of Radiation;13
3.4.1;3.1 Non-ionizing Radiations;14
3.4.1.1;3.1.1 EM Field Radiations;15
3.4.1.2;3.1.2 RF and ?w Radiations;17
3.4.2;3.2 Ionizing Radiation;17
3.4.2.1;3.2.1 Alpha Radiation (?);18
3.4.2.2;3.2.2 Beta Radiation (?);19
3.4.2.3;3.2.3 Neutron Radiation (N);19
3.4.2.4;3.2.4 High-Energy Photon Radiation (Gamma [?] and X-Rays);20
3.5;4 Natural Sources of Ionizing Radiation;20
3.5.1;4.1 Radon;20
3.5.2;4.2 Cosmic Radiation;21
3.5.3;4.3 Natural Radioactivity in Food;21
3.6;5 Artificial (Man-Made) Sources of Ionizing Radiation;22
3.6.1;5.1 Medicine;22
3.6.2;5.2 Nuclear Fuel Cycle;23
3.6.3;5.3 Atmospheric Testing;23
3.6.4;5.4 Chernobyl Accident;24
3.6.5;5.5 Radiation in the Workplace;24
3.7;6 Radiation Units;25
3.7.1;6.1 SI Units;26
3.8;7 Effects of Radiation to Environment;27
3.8.1;7.1 Impact of UV Radiations on Atmosphere;29
3.8.2;7.2 Implications of Radiation on Human Health;30
3.8.3;7.3 Delayed Health Effects;31
3.8.4;7.4 Effects on Fetus/Children;31
3.8.5;7.5 Effects on Genetic Materials;33
3.8.6;7.6 Effect on Plants;33
3.8.7;7.7 Effect on Animals;34
3.8.8;7.8 UV Damage to Aquatic Organisms;36
3.8.9;7.9 RF-EMFs’ Exposures in Kindergarten Children;37
3.8.10;7.10 Solar UV Exposure in Construction Workers;37
3.8.11;7.11 Effect of Cosmic Radiation on Airline Flyers;37
3.9;8 Radiation Disasters in History;39
3.9.1;8.1 Chernobyl Nuclear Disaster;39
3.9.2;8.2 Fukushima Nuclear Disaster;39
3.9.3;8.3 Three Mile Island Nuclear Disaster;40
3.9.4;8.4 Windscale Nuclear Disaster;40
3.10;9 Summary;40
3.11;10 Conclusion;41
3.12;References;41
4;2 Radiation Physics and Chemistry of Polymeric Materials;44
4.1;Abstract;44
4.2;1 Introduction;45
4.3;2 Polymer Ion Interactions;46
4.3.1;2.1 Elastic and Inelastic Collisions;47
4.3.1.1;2.1.1 Coulomb Explosion Model;47
4.3.1.2;2.1.2 Thermal Spike Model;47
4.3.2;2.2 Stopping and Range of Ions in Polymers;48
4.3.3;2.3 Irradiation Effects on Polymers;49
4.4;3 Concept of Free Volume;52
4.4.1;3.1 Positron Annihilation Lifetime Spectroscopy;52
4.5;4 Polymethyl Methacrylate;54
4.6;5 Polyethylene Terephthalate;61
4.7;6 Polyallyl Diglycol Carbonate;67
4.8;7 Applications;68
4.9;8 Summary and Conclusion;70
4.10;Appendix;71
4.11;References;71
5;3 High-Fluence Ion Implantation of Polymers: Evolution of Structure and Composition;78
5.1;Abstract;78
5.2;1 Introduction;78
5.3;2 Ion Stopping and Change of Polymer Structure;80
5.3.1;2.1 Latent Tracks and Thermolysis;80
5.3.2;2.2 Structural Changes Due to Nuclear and Electronic Stopping;82
5.3.3;2.3 Degassing, Carbonisation and Oxidation;84
5.4;3 Depth Distribution of Implanted Impurities;88
5.5;4 Metal Nanoparticle Formation Under High Fluences;91
5.6;5 Nanoparticle Implantation Using Cluster Beam Technique;93
5.7;6 Properties of Polymers Implanted with High Fluences;95
5.7.1;6.1 Surface Properties and Mechanical Characteristics;95
5.7.2;6.2 Electrical Conductance;98
5.7.3;6.3 Optical Properties;102
5.7.4;6.4 Magnetic Properties;107
5.8;7 Conclusion;109
5.9;References;109
6;4 Ion Beam Modification of Poly (methyl methacrylate) (PMMA);121
6.1;Abstract;121
6.2;1 Introduction;121
6.3;2 Chemical Modification of PMMA by High-Energy Ions;122
6.3.1;2.1 Chain Scission and Crosslinking;122
6.3.2;2.2 Radiolysis, Volatiles, and Changes in the Chemical Structure;125
6.3.3;2.3 Damage Cross Sections;131
6.3.4;2.4 Changes in Physicochemical Properties;135
6.3.4.1;2.4.1 Density Enhancement and Compaction;135
6.3.4.2;2.4.2 Optical Properties;137
6.3.4.3;2.4.3 Mechanical Properties;140
6.3.4.4;2.4.4 Changes in Electrical Properties;142
6.4;3 Concluding Remarks;143
6.5;References;145
7;5 Radiation-Induced Effects on the Properties of Polymer-Metal Nanocomposites;148
7.1;Abstract;148
7.2;1 Introduction;149
7.3;2 Nanoparticles;150
7.3.1;2.1 Synthesis of Nanoparticles;150
7.3.2;2.2 Stabilization of Nanoparticles;151
7.4;3 Nanocomposites;152
7.5;4 Metal Nanoparticles;153
7.6;5 Polymer-Metal Nanocomposites (PMN);156
7.7;6 PVA as a Host Matrix and Silver as Nanofiller;157
7.8;7 Ionizing Irradiation-Induced Effects;158
7.8.1;7.1 Electromagnetic Irradiation;158
7.8.2;7.2 Swift Heavy Ions Irradiation;159
7.9;8 Some Past and Future Trends in Ionizing Irradiated Polymer–metal Nanocomposites;162
7.10;9 Optical Properties of Metal Embedded Polymer Nanocomposites;166
7.11;10 Experimental Section;169
7.11.1;10.1 Sample Preparation;169
7.11.2;10.2 Different Irradiation to PVA/Ag Nanocomposites;170
7.12;11 Characterization;170
7.13;12 Results and Discussion;171
7.13.1;12.1 TEM Analysis;171
7.13.2;12.2 Proposed Mechanism of Formation of Silver Nanoparticles;172
7.13.3;12.3 UV-Visible Spectroscopy;173
7.13.3.1;12.3.1 Surface Plasmon Absorption Band;173
7.13.3.2;12.3.2 Optical Energy Gap and Urbach’s Energy;175
7.13.3.3;12.3.3 Refractive Index;179
7.13.4;12.4 X-Ray Diffraction (XRD);181
7.13.5;12.5 Fourier Transmission Infrared (FTIR);183
7.13.6;12.6 Raman;186
7.14;13 Applications of Prepared Nanocomposites;187
7.14.1;13.1 Band Pass Filter;187
7.14.2;13.2 Antireflective Coating;189
7.14.3;13.3 UV Blocking Device;192
7.15;14 Conclusions;193
7.16;References;195
8;6 Swift Heavy Ion Irradiation Effects on the Properties of Conducting Polymer Nanostructures;200
8.1;Abstract;200
8.2;1 Introduction;201
8.3;2 Ion-Matter Interaction;203
8.3.1;2.1 Thermal Spike Model;207
8.3.2;2.2 Coulomb Explosion Model;210
8.4;3 Ion-Matter Interaction Parameters;211
8.5;4 Ion Irradiation Effects on Polymers;212
8.5.1;4.1 Interaction Mechanisms;212
8.5.2;4.2 Latent Ion Track Chemistry;216
8.6;5 Practical Applications of Ion Irradiation;217
8.6.1;5.1 Applications of Low-Energy Ion Irradiation of Solids;217
8.6.2;5.2 Applications of High-Energetic Ion Impact onto Solids;218
8.7;6 Experimental Setup for Ion Irradiation;219
8.8;7 Experimental;221
8.8.1;7.1 Sample Preparation;221
8.8.2;7.2 Formation Mechanism of PPy Nanotubes;222
8.9;8 Irradiation Effects on PPy Nanotubes with 160 MeV Ni12+;223
8.9.1;8.1 High-Resolution Transmission Electron Microscopy Studies;223
8.9.2;8.2 X-Ray Diffraction Studies;223
8.9.3;8.3 Fourier Transform Infrared Spectroscopy Analysis;226
8.9.4;8.4 UV-Vis Absorption Spectroscopy Studies;228
8.9.5;8.5 Micro-Raman Analysis;231
8.9.6;8.6 I-V Characteristics;232
8.9.7;8.7 Thermogravimetric Analysis;233
8.9.8;8.8 AC Conductivity Studies;235
8.9.9;8.9 Dielectric Permittivity Studies;238
8.9.10;8.10 Electric Modulus Studies;241
8.10;9 Perspectives for Ion-Solid Interactions;244
8.11;10 Conclusions;245
8.12;References;246
9;7 Impact of Etchant Variables on the Track Parameters in CR-39 Polymer Nuclear Track Detector: A Review;250
9.1;Abstract;250
9.2;1 Introduction;250
9.3;2 Track Formation and Etching Parameters;252
9.4;3 Etching Parameter Measurements;254
9.4.1;3.1 Bulk Etch Rate;254
9.4.1.1;3.1.1 Methods for Bulk Etch Rate \left( {{{\usertwo V}}_{{\bf B}} } \right) Measurements;254
9.4.1.2;3.1.2 Activation Energy of Bulk Etch Rate \left( {{{\usertwo V}}_{{\bf B}} } \right);255
9.4.1.3;3.1.3 Bulk Etch Rate and Activation Energy Measurements of CR-39 Track Detector;255
9.4.1.4;3.1.4 Data Compilation of Activation Energy of Bulk Etch Rate of CR-39;261
9.4.2;3.2 Track Etch Rate;261
9.4.2.1;3.2.1 Methods for Track Etch Rate \left( {{{\usertwo V}}_{{\bf T}} } \right) Measurements;262
9.4.2.2;3.2.2 Activation Energy of Track Etch Rate;263
9.4.2.3;3.2.3 Track Etch Rate and Activation Energy Measurements of CR-39 Track Detector;263
9.4.2.4;3.2.4 Data Compilation of Activation Energy of Track Etch Rate of CR-39;264
9.4.3;3.3 Sensitivity;265
9.4.4;3.4 Critical Angle of Etching;267
9.4.5;3.5 Etching Efficiency;268
9.5;4 Applications and Future Projections of Nuclear Track Detectors;270
9.5.1;4.1 Applications of Nuclear Track Detectors;270
9.5.1.1;4.1.1 Biological Applications;270
9.5.1.2;4.1.2 Radiation Dosimetry;271
9.5.1.3;4.1.3 Nuclear Physics;271
9.6;5 Conclusions and Future Scope;271
9.7;References;272
10;8 Synthesis of Hydrogels by Modification of Natural Polysaccharides Through Radiation Cross-Linking Polymerization for Use in Drug Delivery;275
10.1;Abstract;275
10.2;1 Historical Background;276
10.3;2 Hydrogels;276
10.4;3 Classifications of Hydrogels;278
10.5;4 Synthesis of Hydrogels;278
10.5.1;4.1 Chemical Synthesis of Hydrogels;281
10.5.2;4.2 Radiation-Induced Synthesis of Hydrogels;282
10.5.2.1;4.2.1 Gamma Radiation-Induced Synthesis of Natural Gum-Based Hydrogels;283
10.5.2.2;4.2.2 Microwave-Assisted Synthesis of Gum-Based Hydrogels;285
10.5.2.3;4.2.3 Electron Radiation-Induced Synthesis of Hydrogels;289
10.5.2.4;4.2.4 Heavy Ion-Induced Modifications and Synthesis of Hydrogels;290
10.6;5 Miscellaneous;291
10.7;6 Conclusion;294
10.8;Acknowledgements;294
10.9;References;294
11;9 Effects of Radiations on the Properties of Polycarbonate;299
11.1;Abstract;299
11.2;1 Importance of the Study of Radiation Effects on Polymers;299
11.3;2 Types of Radiation;300
11.4;3 Interaction of Radiation with Polymer;302
11.5;4 Polycarbonate;303
11.6;5 Schematic Mechanism of Effect of Radiation on Polycarbonate;304
11.7;6 Effect of Radiation on the Properties of Polycarbonate;305
11.7.1;6.1 Optical Properties;305
11.7.2;6.2 Electrical Properties;309
11.7.3;6.3 Thermal Properties;311
11.7.4;6.4 Structural Properties;313
11.7.5;6.5 Chemical Properties;315
11.7.6;6.6 Surface Morphological Properties;317
11.7.7;6.7 Free Volume Properties;319
11.7.8;6.8 Mechanical Properties;320
11.7.9;6.9 Rheological Properties;322
11.8;7 Conclusions;322
11.9;References;323
12;10 Plasma Irradiation of Polymers: Surface to Biological Mitigation;325
12.1;Abstract;325
12.2;1 Biomaterials;326
12.3;2 Polymers;330
12.3.1;2.1 Polymethyl methacrylate (PMMA);331
12.4;3 Nanotechnology and Nanomaterials;332
12.5;4 Polymer—Nanocomposite;333
12.6;5 Plasma Surface Modification;335
12.7;6 Plasma Gases;340
12.7.1;6.1 Air and Its Properties as a Source of Plasma;341
12.7.2;6.2 Inert Gas Neon (Ne) and Its Properties as a Source of Plasma;342
12.7.3;6.3 Reactive Gas Nitrogen (N2) and Its Properties as a Source of Plasma;343
12.7.4;6.4 Sulfur Hexafluoride (SF6) and Its Properties as a Source of Plasma;344
12.8;7 Biocompatibility and Bio-adoptability (in General and Properties Required);345
12.9;8 Role of Nanotechnology for Enhancement of Biocompatibility and Bio-adoptability;346
12.10;9 Role of Plasma Treatment in Enhancement of Biocompatibility and Bio-adoptability;347
12.11;10 Influence of Plasma Processing and Nanomaterial Casting on Biocompatibility and Bio-adoptability of Biomaterials;348
12.12;11 Nanobiomaterials;349
12.13;12 Summary, Conclusions, and Scope for Future Work;350
12.14;References;351
13;11 Effects of Neutron Irradiation on Polymer;357
13.1;Abstract;357
13.2;1 Introduction;357
13.2.1;1.1 Nuclear Interactions with Matter;359
13.2.1.1;1.1.1 Elastic Scattering;359
13.2.1.2;1.1.2 Inelastic Scattering;360
13.2.1.3;1.1.3 Nuclear Reactions;360
13.2.1.4;1.1.4 Neutron Capture;360
13.3;2 Radiation Effects in Materials;361
13.3.1;2.1 Neutron Irradiation Processing and Modifications;363
13.3.1.1;2.1.1 Etching Parameters;363
13.3.1.2;2.1.2 UV–Vis Spectral Analysis;364
13.3.1.3;2.1.3 FTIR Spectroscopic Analysis;368
13.4;3 Conclusions;372
13.5;References;373
14;12 Radiation Crosslinking for the Cable, Rubber and Healthcare Products Industry;375
14.1;Abstract;375
14.2;1 Introduction;376
14.3;2 Radiation Sources;377
14.3.1;2.1 Gamma Irradiators;377
14.3.2;2.2 Electron Accelerators;378
14.3.3;2.3 Electron Accelerator-Based e?/X Systems;379
14.4;3 Radiation Processing of Polymers;380
14.4.1;3.1 Transfer of Ionizing Radiation Energy to the Irradiated Materials Components;380
14.4.2;3.2 Radiation Caused Effects in Polymers;381
14.5;4 Cable Industry;385
14.6;5 Rubber Industry;389
14.6.1;5.1 Tire Industry;391
14.7;6 Medical Devices Industry;392
14.7.1;6.1 Radiation Vulcanization of Latex for Medical Use;392
14.8;7 Other Industrial Applications;393
14.9;8 Conclusions and Challenges for the Future;395
14.10;Acknowledgements;395
14.11;References;395
15;13 Energy Loss of Swift Heavy Ions: Fundamentals and Theoretical Formulations;398
15.1;Abstract;398
15.2;1 Introduction;399
15.3;2 Fundamentals of Ion Interactions with Matter;400
15.3.1;2.1 Electronic Energy Loss Rate;401
15.3.2;2.2 Nuclear Energy Loss Rate;405
15.3.3;2.3 Comparison of Electronic and Nuclear Energy Loss Rate;405
15.3.4;2.4 Scaling Law;406
15.3.5;2.5 Concept of Effective Charge;407
15.3.6;2.6 Units of Energy Loss Rate;407
15.4;3 Energy Loss Formulations;408
15.4.1;3.1 LSS Theory;408
15.4.2;3.2 Northcliffe and Schilling Formulation;409
15.4.3;3.3 Ziegler, Biersack, and Littmark Formulation;410
15.4.4;3.4 Paul and Schinner Formulation;412
15.4.5;3.5 Hubert, Bimbot, and Gauvin Formulation;412
15.4.6;3.6 Diwan et al. Formulation;413
15.5;4 Energy Loss in Polymers/Compounds: Bragg’s Rule;414
15.6;5 Importance and Conclusion;414
15.7;References;415



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.