Buch, Englisch, 312 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 7011 g
Buch, Englisch, 312 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 7011 g
Reihe: Advances in Computer Vision and Pattern Recognition
ISBN: 978-3-319-61656-8
Verlag: Springer International Publishing
Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches forgesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect against fake biometrics samples; presents contributions from a global selection of pre-eminent experts in the field representing academia, industry and government laboratories.
Providing both an accessible introduction to the practical applications of deep learning in biometrics, and a comprehensive coverage of the entire spectrum of biometric modalities, this authoritative volume will be of great interest to all researchers, practitioners and students involved in related areas of computer vision, pattern recognition and machine learning.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Part I: Deep Learning for Face Biometrics.- The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning.- Real-Time Face Identification via Multi-Convolutional Neural Network and Boosted Hashing Forest.- CMS-RCNN: Contextual Multi-Scale Region-Based CNN for Unconstrained Face Detection.- Part II: Deep Learning for Fingerprint, Fingervein and Iris Recognition.- Latent Fingerprint Image Segmentation Using Deep Neural Networks.- Finger Vein Identification Using Convolutional Neural Network and Supervised Discrete Hashing.- Iris Segmentation Using Fully Convolutional Encoder-Decoder Networks.- Part III: Deep Learning for Soft Biometrics.- Two-Stream CNNs for Gesture-Based Verification and Identification: Learning User Style.- DeepGender2: A Generative Approach Toward Occlusion and Low Resolution Robust Facial Gender Classification via Progressively Trained Attention Shift Convolutional Neural Networks (PTAS-CNN) and Deep Convolutional Generative Adversarial Networks (DCGAN).- Gender Classification from NIR Iris Images Using Deep Learning.- Deep Learning for Tattoo Recognition.- Part IV: Deep Learning for Biometric Security and Protection.- Learning Representations for Cryptographic Hash Based Face Template Protection.- Deep Triplet Embedding Representations for Liveness Detection.