Künzi | Quasikonforme Abbildungen | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 26, 182 Seiten, eBook

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

Künzi Quasikonforme Abbildungen


1960
ISBN: 978-3-642-88029-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, Band 26, 182 Seiten, eBook

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

ISBN: 978-3-642-88029-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Künzi Quasikonforme Abbildungen jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Kapitel. Über konforme Abbildungen.- 1.1. Einleitung.- 1.2. Definition eines Ringgebietes.- 1.3. Modulabschätzungen.- 1.4. Eine Beziehung zwischen dem Modul und dem logarithmischen Flächeninhalt.- 1.5. Monotonieeigenschaft des Moduls.- 1.6. Der reduzierte Modul.- 1.7. Reduzierter Modul und reduzierter logarithmischer Flächeninhalt.- 1.8. Weitere Sätze über den reduzierten Modul.- 1.9. Das Normalgebiet.- 1.10. Das Normalgebiet.- 1.11. Das Normalgebiet.- 1.12. Die Funktion v(r).- 1.13. Der Modul eines Vierecks.- 1.14. Moduln und extremale Längen.- 1.15. Dirichlet-Integral und Modul.- 1.16. Die beiden Teichmüllerschen Modulsätze.- 1.17. Anwendung der Modulsätze.- 2. Kapitel. Quasikonforme Homöomorphismen nach der Definition.- 2.1. Stetige und stetig differenzierbare Abbildungen.- 2.2. Lokale Eigenschaften des Dilatationsquotienten.- 2.3. Definition der K-quasikonformen Abbildungen nach.- 2.4. Funktionentheoretische Anwendungen.- 2.5. Einfache Beispiele für K-quasikonforme Homöomorphismen.- 2.6. Die Ungleichung.- 2.7. Der Teichmüller-Wittichsche Verzerrungssatz.- 2.8. Satz.- 2.9. Satz.- 2.10. Eine Verallgemeinerung der Ungleichung.- 2.11. Punktmengen der Kapazität Null.- 2.12. Die Robinsche Konstante.- 2.13. Durchmesser und Kapazität.- 2.14. Über die Koebesche Konstante.- 2.15. Der Ahlforssche Verzerrungssatz.- 2.16. Ein Teichmüllersches Extremalproblem.- 2.17.Grötzschsche Extremalprobleme.- 2.18. Ränderzuordnung.- 3. Kapitel. A nwendungen quasikonformer Abbildungen in der Funktionentheorie.- 3.1. Das Typenproblem.- 3.2. Wertverteilungsprobleme.- 3.3. Der Streckenkomplex.- 3.4. Die Uniformisierung.- 3.5. Über den Maximalbetrag einiger ganzen transzendenten Funktionen.- 3.6. Die Lage der ?-Stellen.- 3.7. Beispiele.- 4. Kapitel. AllgemeineK-quasikonforme Homöomorphismen.- 4.1. Neue Definitionen.- 4.2. K-quasikonforme Homöomorphismen gemäß einer analytischen Definition.- 4.3. K-quasikonforme Homöomorphismen gemäß einer geometrischen Definition.- 4.4. Äquivalenzsatz.- 4.5. Satz.- 4.6. Beweis des Satzes.- 4.7. Satz.- 4.8. Nachweis für A — G.- 4.9. Satz.- 4.10. Die quasikonformen Homöomorphismen nach.- 4.11. Satz.- 4.12. Sätze über K-quasikonforme Homöomorphismen.- 5. Kapitel. K-quasikonforme Abbildungen.- 5.1. Die innere Abbildung.- 5.2. Definition der K-quasikonformen Abbildungen.- 5.3. Beltramische Differentialgleichung.- 5.4. Einige Sätze über allgemeine K-quasikonforme Abbildungen.- 5.5. Normale Familien von K-quasikonformen Abbildungen.- 5.6. Das Maximumprinzip und das Spiegelungsprinzip.- 5.7. Die Picard-Liouvillesche Satzgruppe.- 5.8. Ringeigenschaften der quasikonformen Abbildungen.- 5.9. Übertragung eines Satzes.- 5.10. Invariante Klassen Riemannscher Flächen bei quasikonformen Abbildungen.- 5.11. Die Nevanlinnaschen Hauptsätze für quasimeromorphe Funktionen.- 6. Kapitel. Quadratische Differentiale und extremale quasikonforme Abbildungen.- 6.1. Die Teichmüllersche Formulierung.- 6.2. Problemstellung.- 6.3. Problem A.- 6.4. Problem B.- 6.5. Die formale Lösung.- 6.6. Theorem 1.- 6.7. Die Extremaleigenschaft.- 6.8. Die quasikonformen Abbildungen im Mittel.- 6.9. Infinitesimale Deformationen.- 6.10. Ein Variationsproblem.- 6.11. Existenzbeweis nach.- 6.12. Der Existenzbeweis nach.- 6.13. Vollständige Lösung einer Extremalaufgabe der quasikonformen Abbildung.- 6.14. Teichmüller-Räume.- 7. Kapitel. Quasikonforme Abbildungen,Differentialgleichungen undpseudoanaly- tische Funktionen.- 7.1. Überblick.- 7.2. Das Darstellungstheorem.- 7.3. Nullstellen.- 7.4. DasDirichlet-Problem.- 7.5. Verallgemeinerter Riemannscher Abbildungssatz.- 7.6. Die pseudoanalytischen Funktionen.- 7.7. Eigenschaften pseudoanalytischer Funktionen.- 7.8. Lavrentieffs Fundamentaltheorem für quasikonforme Abbildungen.- 7.9. Lavrentieflscher Abbildungssatz.- Nachtrag.- Namen- und Sachverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.