E-Book, Englisch, 172 Seiten
Kuang / Sturdivant RF and Microwave Microelectronics Packaging II
1. Auflage 2017
ISBN: 978-3-319-51697-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 172 Seiten
ISBN: 978-3-319-51697-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents the latest developments in packaging for high-frequency electronics. It is a companion volume to “RF and Microwave Microelectronics Packaging” (2010) and covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods, and other RF and microwave packaging topics. Chapters provide detailed coverage of phased arrays, T/R modules, 3D transitions, high thermal conductivity materials, carbon nanotubes and graphene advanced materials, and chip size packaging for RF MEMS. It appeals to practicing engineers in the electronic packaging and high-frequency electronics domain, and to academic researchers interested in understanding the leading issues in the commercial sector. It is also a good reference and self-studying guide for students seeking future employment in consumer electronics.
Autoren/Hrsg.
Weitere Infos & Material
1;Dedication;5
2;Foreword;6
3;Foreword;7
4;Contents;9
5;Chapter 1: Introduction to Radio Frequency and Microwave Microelectronic Packaging;11
5.1;1.1 Introduction;11
5.2;1.2 Frequency Bands;12
5.3;1.3 Distributed Effects;13
5.4;1.4 Transmission Lines;15
5.5;1.5 Commonly Used Transmission Lines;17
5.6;1.6 Dispersion in Transmission Lines;18
5.7;1.7 Dielectric and Substrate Materials;19
5.8;1.8 Skin Depth;22
5.9;1.9 Thermal Conductivity, Electrical Conductivity, and Thermal Expansion;23
5.10;1.10 Chapter Conclusions;27
5.11;References;27
6;Chapter 2: Packaging of Transmit/Receive Modules;28
6.1;2.1 Introduction to Packaging of Transmit/Receive Modules;28
6.1.1;2.1.1 Active Electronically Scanned Arrays;29
6.1.2;2.1.2 T/R Module Block Diagram;29
6.2;2.2 Systems Using T/R Modules;31
6.3;2.3 T/R Modules in Communication Systems;31
6.3.1;2.3.1 Cellular Base Stations;31
6.3.2;2.3.2 Wi-Fi Indoor Location Systems Using Phased Arrays;32
6.3.3;2.3.3 60 GHz Wi-Fi;33
6.3.4;2.3.4 Millimeter-Wave Point-to-Point Systems;33
6.4;2.4 T/R Modules in Phased Array Radar;35
6.4.1;2.4.1 Brick Array;35
6.4.2;2.4.2 Tile Array;35
6.4.3;2.4.3 Panel Array;36
6.5;2.5 Thermal Packaging Challenges;37
6.6;2.6 Wafer Level T/R Module Packaging;39
6.7;2.7 Conclusions;39
6.8;References;40
7;Chapter 3: 3D Transitions and Connections;42
7.1;3.1 Introduction;42
7.2;3.2 Vertical Transitions Between Planar Transmission Lines;43
7.2.1;3.2.1 Microstrip or Coplanar Waveguide to Stripline;44
7.2.2;3.2.2 Top Side Microstrip to Bottom Side Microstrip;46
7.2.3;3.2.3 Microstrip to Waveguide Transition;47
7.3;3.3 Through Silicon Via 3D Transitions;47
7.4;3.4 Vertical Transitions Using Connectors;48
7.5;3.5 Vertical Transition Using Flip Chip;50
7.6;3.6 Conclusions;50
7.7;References;50
8;Chapter 4: Electromagnetic Shielding for RF and Microwave Packages;52
8.1;4.1 Introduction;52
8.2;4.2 Electromagnetic Radiation;53
8.2.1;4.2.1 The Source of Radiation;54
8.2.2;4.2.2 How an Antenna Radiates Electric and Magnetic Fields;56
8.2.3;4.2.3 Theoretical View of Radiation;57
8.2.4;4.2.4 Electromagnetic Simulation and Computational Method;58
8.2.4.1;4.2.4.1 The Finite Element Method;59
8.2.4.2;4.2.4.2 Method of Moments;59
8.2.4.3;4.2.4.3 Finite-Difference Time-Domain;60
8.2.4.4;4.2.4.4 Finite-Differences Frequency-Domain;60
8.3;4.3 Shielding Techniques and Methods;61
8.3.1;4.3.1 Metal Caps;61
8.3.2;4.3.2 Plating;62
8.3.3;4.3.3 Spray Coating;63
8.3.4;4.3.4 Sputtering;63
8.4;4.4 Shielding Performance of Thin-layer Conformal Shielding;64
8.4.1;4.4.1 Shielding Performance Measurement Methods;65
8.4.2;4.4.2 Test Vehicles;66
8.4.3;4.4.3 Shielding Effectiveness;67
8.4.4;4.4.4 Far-field Shielding Performance Measurements;67
8.4.5;4.4.5 Near-field Shielding Performance Measurements;69
8.5;4.5 Summary;70
8.6;References;71
9;Chapter 5: Design of C-Band Interdigital Filter and Compact C-Band Hairpin Bandpass Film Filter on Thin Film Substrate;72
9.1;5.1 Introduction;72
9.2;5.2 Microstrip Filter;73
9.3;5.3 Design of the Interdigital Filter;74
9.3.1;5.3.1 Structure of the Filter;74
9.3.2;5.3.2 The Simulation Analysis;75
9.3.3;5.3.3 The Test Results;77
9.4;5.4 Design of the Hairpin Filter;78
9.4.1;5.4.1 Structure of the Filter;78
9.4.2;5.4.2 The Simulation Analysis;78
9.4.3;5.4.3 The Test Results;80
9.5;5.5 Conclusion;81
9.6;References;82
10;Chapter 6: Research on High-Reliable Low-Loss HTCC Technology Applied in Millimeter Wave SMT Package;83
10.1;6.1 Introduction;83
10.2;6.2 Research Work;83
10.2.1;6.2.1 Low-Loss Ceramic;83
10.2.2;6.2.2 Co-fired Tungsten Conductor Pastes;86
10.2.3;6.2.3 SMT Package Prepared by the High-Reliable Low-Loss HTCC Technology;88
10.3;6.3 Conclusions;89
10.4;References;90
11;Chapter 7: Chip Size Packaging (CSP) for RF MEMS Devices;91
11.1;7.1 Introduction;91
11.2;7.2 Challenges for RF MEMS Packaging;92
11.3;7.3 Traditional MEMS Packaging Techniques and their Limitations;92
11.4;7.4 An Overview of CSP Packaging Technique;93
11.5;7.5 Gold Bump FC-CSP Packaging;96
11.5.1;7.5.1 Ultrasonic Gold (Stub) Bumping;96
11.5.2;7.5.2 Dicing;97
11.5.2.1;7.5.2.1 Conventional Blade Dicing for MEMS Chips;97
11.5.2.2;7.5.2.2 Stealth Laser Dicing;98
11.5.3;7.5.3 Flip Chip Bonding;98
11.5.4;7.5.4 Film Pasting (Molding);101
11.6;7.6 WL-CSP (Wafer-Level);102
11.6.1;7.6.1 Wafer Level Packaging Design;102
11.6.2;7.6.2 Via/Hole Drilling;103
11.6.3;7.6.3 RDL Metallization;103
11.6.4;7.6.4 Wafer Bonding;103
11.7;7.7 Conclusion;104
11.8;References;104
12;Chapter 8: The Challenge in Packaging and Assembling the Advanced Power Amplifiers;106
12.1;8.1 Introduction;106
12.2;8.2 Thermal Analysis;107
12.3;8.3 Challenges Analysis;110
12.3.1;8.3.1 ?die;110
12.3.2;8.3.2 ?die-mount;112
12.3.3;8.3.3 ?base and ?flange;113
12.3.4;8.3.4 ?flange-case mount;114
12.4;8.4 Case Study;114
12.5;8.5 New Approaches;116
12.5.1;8.5.1 Package Materials;116
12.5.2;8.5.2 Die-Mounting Material;117
12.6;8.6 Conclusions;118
12.7;References;119
13;Chapter 9: High Thermal Conductivity Materials: Aluminum Diamond, Aluminum Silicon Carbide, and Copper Diamond;120
13.1;9.1 Materials Used in Microwave Packages and Expectations from Materials, Availability and Properties of These Materials;120
13.2;9.2 Role of Aluminum Diamond and AlSiC in Advancing Microwave Technology;122
13.3;9.3 Electronic Package Fabrication Process;128
13.4;9.4 Core Capabilities;130
13.5;9.5 Conclusion;133
13.6;References;134
14;Chapter 10: Advancement in High Thermal Conductive Graphite for Microelectronic Packaging;135
14.1;10.1 Introduction;135
14.2;10.2 TPG and TPG-Metal Composites;136
14.2.1;10.2.1 Thermal Pyrolytic Graphite (TPG);136
14.2.2;10.2.2 TPG-Metal Composite;137
14.3;10.3 Design, Property, and Reliability;139
14.3.1;10.3.1 Design Principles;139
14.3.2;10.3.2 Thermal Conductivity;142
14.3.3;10.3.3 Thermal Expansion;142
14.3.4;10.3.4 Reliability;143
14.4;10.4 Applications;144
14.4.1;10.4.1 TC1050* Heat Spreader;145
14.4.2;10.4.2 TMP-EX Heat Sink;146
14.4.3;10.4.3 TMP-FX Thermal Strap;148
14.5;10.5 Summary;150
14.6;References;151
15;Chapter 11: Carbon Nanotubes and Graphene for Microwave/RF Electronics Packaging;152
15.1;11.1 Introduction;152
15.2;11.2 Carbon Nanotubes and Graphene Structure and Properties;153
15.2.1;11.2.1 Structure of Carbon Nanotubes and Graphene;153
15.2.2;11.2.2 Mechanical Properties;155
15.2.3;11.2.3 Electrical Properties;156
15.2.4;11.2.4 Thermal Properties;157
15.3;11.3 Applications;158
15.3.1;11.3.1 Carbon Nanotube for Thermal Interface Materials (TIMs);158
15.3.2;11.3.2 Carbon Nanotubes/Nanofibers (CNTs/CNFs) for Interconnects;160
15.3.3;11.3.3 Graphene for Interconnects;161
15.3.4;11.3.4 Graphene for Heat Spreading Layers;162
15.3.5;11.3.5 Graphene for Other Applications of IC Packaging;163
15.4;11.4 Challenges;164
15.5;11.5 Summary;165
15.6;References;165
16;Erratum to;173
17;Index;174




