E-Book, Englisch, 285 Seiten
Kuang / Kim / Cahill RF and Microwave Microelectronics Packaging
1. Auflage 2009
ISBN: 978-1-4419-0984-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 285 Seiten
ISBN: 978-1-4419-0984-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
RF and Microwave Microelectronics Packaging presents the latest developments in packaging for high-frequency electronics. It will appeal to practicing engineers in the electronic packaging and high-frequency electronics fields and to academic researchers interested in understanding leading issues in the commercial sector. It covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods as well as other RF/MW packaging-related fields.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;4
2;Contents;7
3;Contributors;13
4;1 Fundamentals of Packaging at Microwaveand Millimeter-Wave Frequencies;15
4.1;1.1 Wavelength and Frequency;17
4.2;1.2 Lumped Elements;17
4.3;1.3 Transmission Lines;19
4.3.1;1.3.1 Dispersion;22
4.3.2;1.3.2 Dispersion Effects in High Speed Systems;24
4.3.3;1.3.3 Transmission Line Distributed Effects;26
4.3.4;1.3.4 Transmission Line Coupling and Cross Talk;27
4.4;1.4 Package Fabrication Methods;29
4.4.1;1.4.1 Co-fired Ceramics;29
4.4.2;1.4.2 Thick Film and Thin Film Ceramics;32
4.4.3;1.4.3 Organic Substrates;33
4.5;1.5 Interconnects;34
4.6;1.6 Conclusions;36
4.7;References;37
5;2 Low-Cost High-Bandwidth Millimeter Wave LeadframePackages;38
5.1;2.1 Introduction;38
5.2;2.2 MicroCoax Approach;39
5.2.1;2.2.1 Packaging Approaches;42
5.2.2;2.2.2 Limitations to the Approach;45
5.3;2.3 MicroCoax/Leadframe Approach;45
5.3.1;2.3.1 Package I/O Structure Considerations;46
5.3.2;2.3.2 Modelling the Signal Path;47
5.3.3;2.3.3 Performance;51
5.4;2.4 Conclusion;55
6;3 Polymeric Microelectromechanical Millimeter Wave Systems;56
6.1;3.1 Introduction;56
6.2;3.2 Polymeric Millimeter Wave Systems using Micromachining Technologies;57
6.3;3.3 Fabrication Examples of mm-Wave Components;61
6.3.1;3.3.1 Polymeric Waveguides;61
6.3.2;3.3.2 Waveguide-Based Iris Filters;62
6.3.3;3.3.3 Waveguide-Based Tunable Filters and Phase Shifters;64
6.3.4;3.3.4 Waveguide-Fed Horn Antennas;68
6.3.5;3.3.5 W-Band Waveguide Feeding Network of a 22 Horn Antenna Array;70
6.4;3.4 Fundamental Characterizations of Polymer Metallization Process;72
6.4.1;3.4.1 Surface Roughness;72
6.4.2;3.4.2 Characterization of In-channel Electroplating Thickness;74
6.4.3;3.4.3 Geometry Effects;75
6.5;3.5 Conclusion;78
6.6;References;78
7;4 Millimeter-Wave Chip-on-Board Integration and Packaging;82
7.1;4.1 Motivation Motivation for a Chip-on-Board Approach for Millimeter-Wave Product Manufacturing ;82
7.1.1;4.1.1 The Drive for Low Cost;82
7.1.2;4.1.2 Low-Cost Manufacturing Processes;83
7.1.2.1;4.1.2.1 Minimizing Labor and Capital Cost per Unit;83
7.1.2.2;4.1.2.2 Minimizing Materials Cost;85
7.1.2.3;4.1.2.3 Achieving Scalability Scalability ;85
7.1.3;4.1.3 Problems Specific to Millimeter-Wave Electronics;86
7.1.3.1;4.1.3.1 The Problem of Distances;86
7.1.3.2;4.1.3.2 The Problem with Encapsulants Encapsulants ;89
7.1.3.3;4.1.3.3 The Problem of Shielding Shielding ;91
7.1.3.4;4.1.3.4 The Problem of Cavity Resonances;91
7.1.3.5;4.1.3.5 The Problem of Thermal Expansion Mismatch;92
7.1.3.6;4.1.3.6 The Problem of Environmental Control;93
7.2;4.2 A Chip-on-Board Solution;93
7.2.1;4.2.1 The Surface-Mount Panel;94
7.2.2;4.2.2 Attaching the Bare Chips;96
7.2.3;4.2.3 Wire Bond Interconnects;96
7.2.4;4.2.4 Eliminating Wire Bonds in the RF Path;97
7.2.5;4.2.5 Cover Cover Lamination;98
7.2.6;4.2.6 Segregation Segregation ;100
7.2.7;4.2.7 Testing;100
7.3;4.3 Application Examples;100
7.3.1;4.3.1 A 60-GHz Transceiver;101
7.3.2;4.3.2 Miniaturized 60-GHz Transmitter and Receiver Modules;102
7.3.3;4.3.3 76-GHz Automotive Radar Module Package ;102
7.4;4.4 Summary;103
7.5;References;103
8;5 Liquid Crystal Polymer for RF and Millimeter-Wave Multi-Layer Hermetic Packages and Modules;104
8.1;5.1 Introduction;104
8.2;5.2 Design and Fabrication of the Thin-Film LCP Package;106
8.3;5.3 Lid Construction and Lamination;108
8.4;5.4 Results and Model of Lowpass Feedthrough;111
8.5;5.5 Hermeticity and Leak Rate Measurement;114
8.6;5.6 Reliability of LCP Surface Mount Packages;115
8.6.1;5.6.1 Non-operating Temperature Step Stressing;116
8.6.2;5.6.2 Non-operating Thermal Shock Testing;116
8.6.3;5.6.3 Operating Humidity Exposure Testing;118
8.6.4;5.6.4 Reliability Testing Summary;119
8.7;5.7 Bandpass Feedthrough;119
8.7.1;5.7.1 Bandpass Feedthrough Design and Fabrication;119
8.7.2;5.7.2 Bandpass Feedthrough Results and Discussion;122
8.8;5.8 Conclusion;124
8.9;References;125
9;6 RF/Microwave Substrate Packaging Roadmap for PortableDevices;127
9.1;6.1 Introduction;127
9.2;6.2 Substrate Materials for Portable Products;128
9.3;6.3 RF Substrate Materials Thermal and Electrical Properties;128
9.3.1;6.3.1 Standard FR-4;128
9.3.2;6.3.2 High TG FR-4;129
9.3.3;6.3.3 Polyimide;130
9.4;6.4 Cyanate Ester Blend (BT- Bismaleamide Triazine);130
9.5;6.5 PTFE Based Laminates;131
9.5.1;6.5.1 PTFE Resin Coated on Conventional Glass;131
9.5.2;6.5.2 PTFE Film Impregnated with Cyanate Ester or Epoxy Resin;131
9.5.3;6.5.3 PTFE Mixed with Low Dk Ceramic;131
9.6;6.6 Materials Summary;132
9.7;6.7 Substrate Critical Properties;132
9.7.1;6.7.1 Dielectric Constant (Dk);132
9.7.2;6.7.2 Dissipation Factor/Dielectric Loss: (tan);133
9.7.3;6.7.3 Glass Transition Temperature ( Tg);133
9.7.4;6.7.4 Glass Decomposition Temperature; Td;133
9.7.5;6.7.5 Moisture Absorption;134
9.7.6;6.7.6 Coefficient of Thermal Expansion;134
9.8;6.8 Materials Summary;134
9.9;6.9 Portable Products Technology Roadmap;134
9.10;6.10 Summary;138
9.11;6.11 Summary;140
9.12;References;140
10;7 Ceramic Systems in Package for RF and Microwave;141
10.1;7.1 Introduction;141
10.2;7.2 RF-PLATFORM;141
10.2.1;7.2.1 LTCC for Systems in Package;142
10.2.2;7.2.2 Design of Ceramic Packages;143
10.2.3;7.2.3 Why Multi-Project Wafers Made of LTCC?;143
10.2.4;7.2.4 Hermetic Capping of MEMS with Ceramic Lids;144
10.2.5;7.2.5 LTCC Packages for Advanced RF and Microwave Applications;145
10.3;7.3 Three Examples;147
10.3.1;7.3.1 4 by 4 Patch Antenna Array for Operation at 35 GHz;147
10.3.1.1;7.3.1.1 Design of the Fixed Beam Antenna;148
10.3.1.2;7.3.1.2 Characterisation and Measurements;149
10.3.1.3;7.3.1.3 Hybrid Integration Concept for RF-MEMS Phase Shifters on Silicon;152
10.3.2;7.3.2 LTCC for 77 81 GHz Automotive Radar Systems-in-Package;154
10.3.3;7.3.3 24 GHz Switched Beam Steering Array Antenna Based on RF MEMS Switch Matrix;157
10.3.3.1;7.3.3.1 RF MEMS Switch Network;158
10.3.3.2;7.3.3.2 Travelling Wave Antennas;160
10.3.3.3;7.3.3.3 Heterogeneous Integration Using LTCC;161
10.4;7.4 RF-MEMS for Radar and Telecom Applications;167
10.4.1;7.4.1 Research Activities and Trends on RF-MEMS Switches;168
10.4.1.1;7.4.1.1 High Performance RF-MEMS Switches on Silicon Using High-k Dielectric Material;168
10.4.1.2;7.4.1.2 Integration of RF-MEMS in Functional Devices;170
10.4.1.3;7.4.1.3 Monothically Integrated GaN-Based RF-MEMS Switches for High Power Handling;172
10.4.1.4;7.4.1.4 35-GHz RF-MEMS Switches in the Framework of RF-PLATFORM;174
10.5;References;175
11;8 Low-Temperature Cofired-Ceramic Laminate Waveguides for mmWave Applications;176
11.1;8.1 Introduction;176
11.2;8.2 The Laminated Waveguide;177
11.3;8.3 Transitions to a LWG;178
11.4;8.4 Rectangular Waveguide Theory;180
11.5;8.5 LTCC Process;185
11.6;8.6 Insertion Loss in an LTCC Laminated Waveguides;185
11.7;8.7 U- band;188
11.8;8.8 V-band;189
11.9;8.9 E-band;189
11.10;8.10 W-band;189
11.11;8.11 F-band;195
11.12;8.12 LWG-to-LWG Coupling;195
11.13;8.13 LWG vs. Stripline;195
11.14;8.14 Summary;198
11.15;References;199
12;9 LTCC Substrates for RF/MW Application;200
12.1;9.1 Introduction;200
12.2;9.2 LTCC Fabrication Process;203
12.3;9.3 Current Status and Trend;208
12.4;References;214
13;10 High Thermal Dissipation Ceramics and Composite Materials for Microelectronic Packaging;218
13.1;10.1 Introduction;219
13.2;10.2 Ceramics and Carbon Based Materials;221
13.2.1;10.2.1 Common Packaging Ceramics;221
13.2.2;10.2.2 LTCC;221
13.2.3;10.2.3 High Performance Packaging Ceramics (BeO AlN);226
13.3;10.3 Direct Bond Copper (DBC) Packaging;229
13.4;10.4 RF/MW Brazed Packages;231
13.5;10.5 Thin-Film Packaging;231
13.6;10.6 Thick-Film Packaging;232
13.7;10.7 Carbon Nanotubes (CNT);233
13.8;10.8 Composites;234
13.8.1;10.8.1 Metal Matrix Composites;234
13.8.2;10.8.2 Cu/cBN Composites;238
13.8.3;10.8.3 Cu/SiC Composites;239
13.8.4;10.8.4 Al/Diamond Composites;239
13.9;10.9 Conclusions;241
13.10;References;242
14;11 High Performance Microelectronics Packaging Heat SinkMaterials;244
14.1;11.1 Introduction;244
14.2;11.2 Refractory Metal Based Microelectronics Packaging Materials;247
14.2.1;11.2.1 Development, Manufacturing and Application of Copper Tungsten;247
14.2.1.1;11.2.1.1 Characteristics of Copper Tungsten;247
14.2.1.2;11.2.1.2 WCu Manufacturing Process and Technical Properties;248
14.2.2;11.2.2 Development, Manufacturing and Application of Copper Molybdenum (MoCu);252
14.2.2.1;11.2.2.1 Comparison Between MoCu and WCu Packaging Materials;252
14.2.2.2;11.2.2.2 MoCu Manufacturing Process and Technical Properties;254
14.2.3;11.2.3 Development, Manufacturing and Application of Copper-Molybdenum-Copper Laminates and Copper-Copper/Molybdenum-Copper Laminates;255
14.2.3.1;11.2.3.1 Material Characteristics;255
14.2.3.2;11.2.3.2 Manufacturing Process Flow and Typical Properties;256
14.3;11.3 Aluminum Based Heat Sink Materials;259
14.3.1;11.3.1 AlSiC Heat Sink Materials;259
14.3.1.1;11.3.1.1 History and Characteristics;259
14.3.1.2;11.3.1.2 Aluminum Matrix Composite Materials;259
14.4;11.4 New Development for Microelectronics Packaging Heat Sink Materials;269
14.5;References;273
15;12 Technology Research on AlN 3D MCM;277
15.1;12.1 Introduction;277
15.2;12.2 Experiment;279
15.2.1;12.2.1 Co-fired Spacer Rod and 2D MCM Substrate;279
15.2.2;12.2.2 Vertical Interconnected by BGA Solder Ball;279
15.2.3;12.2.3 AlN 3D MCM Package;279
15.2.4;12.2.4 Technological Method;280
15.3;12.3 Result and Discussion;280
15.3.1;12.3.1 General Technological Scheme;280
15.3.2;12.3.2 Layout and Interconnect Design;281
15.3.2.1;12.3.2.1 2D MCM Layout Design;281
15.3.2.2;12.3.2.2 3D MCM Interconnected Design;281
15.4;12.4 Matching Optimization Research on W paste and AlN Ceramics;282
15.4.1;12.4.1 Technological Improvement Experiment of AlN 2D MCM Substrate;283
15.4.2;12.4.2 The Making of Spacer Rod;284
15.4.3;12.4.3 Package Technology;286
15.4.4;12.4.4 Vertical Interconnected Technology Research;286
15.5;12.5 Result of Experiment;288
15.6;12.6 Conclusion;288
15.7;References;288
16;Index;290




