Kuang / Kim / Cahill | RF and Microwave Microelectronics Packaging | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 285 Seiten

Kuang / Kim / Cahill RF and Microwave Microelectronics Packaging


1. Auflage 2009
ISBN: 978-1-4419-0984-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 285 Seiten

ISBN: 978-1-4419-0984-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



RF and Microwave Microelectronics Packaging presents the latest developments in packaging for high-frequency electronics. It will appeal to practicing engineers in the electronic packaging and high-frequency electronics fields and to academic researchers interested in understanding leading issues in the commercial sector. It covers the latest developments in thermal management, electrical/RF/thermal-mechanical designs and simulations, packaging and processing methods as well as other RF/MW packaging-related fields.

Kuang / Kim / Cahill RF and Microwave Microelectronics Packaging jetzt bestellen!

Weitere Infos & Material


1;Preface;4
2;Contents;7
3;Contributors;13
4;1 Fundamentals of Packaging at Microwaveand Millimeter-Wave Frequencies;15
4.1;1.1 Wavelength and Frequency;17
4.2;1.2 Lumped Elements;17
4.3;1.3 Transmission Lines;19
4.3.1;1.3.1 Dispersion;22
4.3.2;1.3.2 Dispersion Effects in High Speed Systems;24
4.3.3;1.3.3 Transmission Line Distributed Effects;26
4.3.4;1.3.4 Transmission Line Coupling and Cross Talk;27
4.4;1.4 Package Fabrication Methods;29
4.4.1;1.4.1 Co-fired Ceramics;29
4.4.2;1.4.2 Thick Film and Thin Film Ceramics;32
4.4.3;1.4.3 Organic Substrates;33
4.5;1.5 Interconnects;34
4.6;1.6 Conclusions;36
4.7;References;37
5;2 Low-Cost High-Bandwidth Millimeter Wave LeadframePackages;38
5.1;2.1 Introduction;38
5.2;2.2 MicroCoax Approach;39
5.2.1;2.2.1 Packaging Approaches;42
5.2.2;2.2.2 Limitations to the Approach;45
5.3;2.3 MicroCoax/Leadframe Approach;45
5.3.1;2.3.1 Package I/O Structure Considerations;46
5.3.2;2.3.2 Modelling the Signal Path;47
5.3.3;2.3.3 Performance;51
5.4;2.4 Conclusion;55
6;3 Polymeric Microelectromechanical Millimeter Wave Systems;56
6.1;3.1 Introduction;56
6.2;3.2 Polymeric Millimeter Wave Systems using Micromachining Technologies;57
6.3;3.3 Fabrication Examples of mm-Wave Components;61
6.3.1;3.3.1 Polymeric Waveguides;61
6.3.2;3.3.2 Waveguide-Based Iris Filters;62
6.3.3;3.3.3 Waveguide-Based Tunable Filters and Phase Shifters;64
6.3.4;3.3.4 Waveguide-Fed Horn Antennas;68
6.3.5;3.3.5 W-Band Waveguide Feeding Network of a 22 Horn Antenna Array;70
6.4;3.4 Fundamental Characterizations of Polymer Metallization Process;72
6.4.1;3.4.1 Surface Roughness;72
6.4.2;3.4.2 Characterization of In-channel Electroplating Thickness;74
6.4.3;3.4.3 Geometry Effects;75
6.5;3.5 Conclusion;78
6.6;References;78
7;4 Millimeter-Wave Chip-on-Board Integration and Packaging;82
7.1;4.1 Motivation Motivation for a Chip-on-Board Approach for Millimeter-Wave Product Manufacturing ;82
7.1.1;4.1.1 The Drive for Low Cost;82
7.1.2;4.1.2 Low-Cost Manufacturing Processes;83
7.1.2.1;4.1.2.1 Minimizing Labor and Capital Cost per Unit;83
7.1.2.2;4.1.2.2 Minimizing Materials Cost;85
7.1.2.3;4.1.2.3 Achieving Scalability Scalability ;85
7.1.3;4.1.3 Problems Specific to Millimeter-Wave Electronics;86
7.1.3.1;4.1.3.1 The Problem of Distances;86
7.1.3.2;4.1.3.2 The Problem with Encapsulants Encapsulants ;89
7.1.3.3;4.1.3.3 The Problem of Shielding Shielding ;91
7.1.3.4;4.1.3.4 The Problem of Cavity Resonances;91
7.1.3.5;4.1.3.5 The Problem of Thermal Expansion Mismatch;92
7.1.3.6;4.1.3.6 The Problem of Environmental Control;93
7.2;4.2 A Chip-on-Board Solution;93
7.2.1;4.2.1 The Surface-Mount Panel;94
7.2.2;4.2.2 Attaching the Bare Chips;96
7.2.3;4.2.3 Wire Bond Interconnects;96
7.2.4;4.2.4 Eliminating Wire Bonds in the RF Path;97
7.2.5;4.2.5 Cover Cover Lamination;98
7.2.6;4.2.6 Segregation Segregation ;100
7.2.7;4.2.7 Testing;100
7.3;4.3 Application Examples;100
7.3.1;4.3.1 A 60-GHz Transceiver;101
7.3.2;4.3.2 Miniaturized 60-GHz Transmitter and Receiver Modules;102
7.3.3;4.3.3 76-GHz Automotive Radar Module Package ;102
7.4;4.4 Summary;103
7.5;References;103
8;5 Liquid Crystal Polymer for RF and Millimeter-Wave Multi-Layer Hermetic Packages and Modules;104
8.1;5.1 Introduction;104
8.2;5.2 Design and Fabrication of the Thin-Film LCP Package;106
8.3;5.3 Lid Construction and Lamination;108
8.4;5.4 Results and Model of Lowpass Feedthrough;111
8.5;5.5 Hermeticity and Leak Rate Measurement;114
8.6;5.6 Reliability of LCP Surface Mount Packages;115
8.6.1;5.6.1 Non-operating Temperature Step Stressing;116
8.6.2;5.6.2 Non-operating Thermal Shock Testing;116
8.6.3;5.6.3 Operating Humidity Exposure Testing;118
8.6.4;5.6.4 Reliability Testing Summary;119
8.7;5.7 Bandpass Feedthrough;119
8.7.1;5.7.1 Bandpass Feedthrough Design and Fabrication;119
8.7.2;5.7.2 Bandpass Feedthrough Results and Discussion;122
8.8;5.8 Conclusion;124
8.9;References;125
9;6 RF/Microwave Substrate Packaging Roadmap for PortableDevices;127
9.1;6.1 Introduction;127
9.2;6.2 Substrate Materials for Portable Products;128
9.3;6.3 RF Substrate Materials Thermal and Electrical Properties;128
9.3.1;6.3.1 Standard FR-4;128
9.3.2;6.3.2 High TG FR-4;129
9.3.3;6.3.3 Polyimide;130
9.4;6.4 Cyanate Ester Blend (BT- Bismaleamide Triazine);130
9.5;6.5 PTFE Based Laminates;131
9.5.1;6.5.1 PTFE Resin Coated on Conventional Glass;131
9.5.2;6.5.2 PTFE Film Impregnated with Cyanate Ester or Epoxy Resin;131
9.5.3;6.5.3 PTFE Mixed with Low Dk Ceramic;131
9.6;6.6 Materials Summary;132
9.7;6.7 Substrate Critical Properties;132
9.7.1;6.7.1 Dielectric Constant (Dk);132
9.7.2;6.7.2 Dissipation Factor/Dielectric Loss: (tan);133
9.7.3;6.7.3 Glass Transition Temperature ( Tg);133
9.7.4;6.7.4 Glass Decomposition Temperature; Td;133
9.7.5;6.7.5 Moisture Absorption;134
9.7.6;6.7.6 Coefficient of Thermal Expansion;134
9.8;6.8 Materials Summary;134
9.9;6.9 Portable Products Technology Roadmap;134
9.10;6.10 Summary;138
9.11;6.11 Summary;140
9.12;References;140
10;7 Ceramic Systems in Package for RF and Microwave;141
10.1;7.1 Introduction;141
10.2;7.2 RF-PLATFORM;141
10.2.1;7.2.1 LTCC for Systems in Package;142
10.2.2;7.2.2 Design of Ceramic Packages;143
10.2.3;7.2.3 Why Multi-Project Wafers Made of LTCC?;143
10.2.4;7.2.4 Hermetic Capping of MEMS with Ceramic Lids;144
10.2.5;7.2.5 LTCC Packages for Advanced RF and Microwave Applications;145
10.3;7.3 Three Examples;147
10.3.1;7.3.1 4 by 4 Patch Antenna Array for Operation at 35 GHz;147
10.3.1.1;7.3.1.1 Design of the Fixed Beam Antenna;148
10.3.1.2;7.3.1.2 Characterisation and Measurements;149
10.3.1.3;7.3.1.3 Hybrid Integration Concept for RF-MEMS Phase Shifters on Silicon;152
10.3.2;7.3.2 LTCC for 77 81 GHz Automotive Radar Systems-in-Package;154
10.3.3;7.3.3 24 GHz Switched Beam Steering Array Antenna Based on RF MEMS Switch Matrix;157
10.3.3.1;7.3.3.1 RF MEMS Switch Network;158
10.3.3.2;7.3.3.2 Travelling Wave Antennas;160
10.3.3.3;7.3.3.3 Heterogeneous Integration Using LTCC;161
10.4;7.4 RF-MEMS for Radar and Telecom Applications;167
10.4.1;7.4.1 Research Activities and Trends on RF-MEMS Switches;168
10.4.1.1;7.4.1.1 High Performance RF-MEMS Switches on Silicon Using High-k Dielectric Material;168
10.4.1.2;7.4.1.2 Integration of RF-MEMS in Functional Devices;170
10.4.1.3;7.4.1.3 Monothically Integrated GaN-Based RF-MEMS Switches for High Power Handling;172
10.4.1.4;7.4.1.4 35-GHz RF-MEMS Switches in the Framework of RF-PLATFORM;174
10.5;References;175
11;8 Low-Temperature Cofired-Ceramic Laminate Waveguides for mmWave Applications;176
11.1;8.1 Introduction;176
11.2;8.2 The Laminated Waveguide;177
11.3;8.3 Transitions to a LWG;178
11.4;8.4 Rectangular Waveguide Theory;180
11.5;8.5 LTCC Process;185
11.6;8.6 Insertion Loss in an LTCC Laminated Waveguides;185
11.7;8.7 U- band;188
11.8;8.8 V-band;189
11.9;8.9 E-band;189
11.10;8.10 W-band;189
11.11;8.11 F-band;195
11.12;8.12 LWG-to-LWG Coupling;195
11.13;8.13 LWG vs. Stripline;195
11.14;8.14 Summary;198
11.15;References;199
12;9 LTCC Substrates for RF/MW Application;200
12.1;9.1 Introduction;200
12.2;9.2 LTCC Fabrication Process;203
12.3;9.3 Current Status and Trend;208
12.4;References;214
13;10 High Thermal Dissipation Ceramics and Composite Materials for Microelectronic Packaging;218
13.1;10.1 Introduction;219
13.2;10.2 Ceramics and Carbon Based Materials;221
13.2.1;10.2.1 Common Packaging Ceramics;221
13.2.2;10.2.2 LTCC;221
13.2.3;10.2.3 High Performance Packaging Ceramics (BeO AlN);226
13.3;10.3 Direct Bond Copper (DBC) Packaging;229
13.4;10.4 RF/MW Brazed Packages;231
13.5;10.5 Thin-Film Packaging;231
13.6;10.6 Thick-Film Packaging;232
13.7;10.7 Carbon Nanotubes (CNT);233
13.8;10.8 Composites;234
13.8.1;10.8.1 Metal Matrix Composites;234
13.8.2;10.8.2 Cu/cBN Composites;238
13.8.3;10.8.3 Cu/SiC Composites;239
13.8.4;10.8.4 Al/Diamond Composites;239
13.9;10.9 Conclusions;241
13.10;References;242
14;11 High Performance Microelectronics Packaging Heat SinkMaterials;244
14.1;11.1 Introduction;244
14.2;11.2 Refractory Metal Based Microelectronics Packaging Materials;247
14.2.1;11.2.1 Development, Manufacturing and Application of Copper Tungsten;247
14.2.1.1;11.2.1.1 Characteristics of Copper Tungsten;247
14.2.1.2;11.2.1.2 WCu Manufacturing Process and Technical Properties;248
14.2.2;11.2.2 Development, Manufacturing and Application of Copper Molybdenum (MoCu);252
14.2.2.1;11.2.2.1 Comparison Between MoCu and WCu Packaging Materials;252
14.2.2.2;11.2.2.2 MoCu Manufacturing Process and Technical Properties;254
14.2.3;11.2.3 Development, Manufacturing and Application of Copper-Molybdenum-Copper Laminates and Copper-Copper/Molybdenum-Copper Laminates;255
14.2.3.1;11.2.3.1 Material Characteristics;255
14.2.3.2;11.2.3.2 Manufacturing Process Flow and Typical Properties;256
14.3;11.3 Aluminum Based Heat Sink Materials;259
14.3.1;11.3.1 AlSiC Heat Sink Materials;259
14.3.1.1;11.3.1.1 History and Characteristics;259
14.3.1.2;11.3.1.2 Aluminum Matrix Composite Materials;259
14.4;11.4 New Development for Microelectronics Packaging Heat Sink Materials;269
14.5;References;273
15;12 Technology Research on AlN 3D MCM;277
15.1;12.1 Introduction;277
15.2;12.2 Experiment;279
15.2.1;12.2.1 Co-fired Spacer Rod and 2D MCM Substrate;279
15.2.2;12.2.2 Vertical Interconnected by BGA Solder Ball;279
15.2.3;12.2.3 AlN 3D MCM Package;279
15.2.4;12.2.4 Technological Method;280
15.3;12.3 Result and Discussion;280
15.3.1;12.3.1 General Technological Scheme;280
15.3.2;12.3.2 Layout and Interconnect Design;281
15.3.2.1;12.3.2.1 2D MCM Layout Design;281
15.3.2.2;12.3.2.2 3D MCM Interconnected Design;281
15.4;12.4 Matching Optimization Research on W paste and AlN Ceramics;282
15.4.1;12.4.1 Technological Improvement Experiment of AlN 2D MCM Substrate;283
15.4.2;12.4.2 The Making of Spacer Rod;284
15.4.3;12.4.3 Package Technology;286
15.4.4;12.4.4 Vertical Interconnected Technology Research;286
15.5;12.5 Result of Experiment;288
15.6;12.6 Conclusion;288
15.7;References;288
16;Index;290



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.