Kuang | Deep Learning | Buch | 978-1-394-25600-6 | www2.sack.de

Buch, Englisch

Kuang

Deep Learning

Principles and Implementations
1. Auflage 2026
ISBN: 978-1-394-25600-6
Verlag: Wiley

Principles and Implementations

Buch, Englisch

ISBN: 978-1-394-25600-6
Verlag: Wiley


A hands-on and intuitive guide to the foundations of modern deep learning

In Deep Learning: Principles and Implementations, distinguished researcher and professor Weidong “Will” Kuang delivers an up-to-date exploration of how major deep learning algorithms and architectures are formalized and developed from mathematical equations. The book bridges theory and practice and covers a wide range of fundamental topics, including linear regression, logistic regression, basic neural networks, convolution neural networks, as well as other basic and advanced subjects in the field.

The author provides intuitive introductions to each subject and presents the development of algorithms and architectures from basic mathematical concepts. Along the way, he relies on straightforward math to keep the topics accessible for non-mathematicians and accompanies his explanations with tested Python sample code you can apply in your own work.

You’ll also find: - Thorough introductions to both linear and logistic regression, offering a solid foundation and insight into neural networks
- Comprehensive explorations of neural networks, computer vision, natural language processing, generative models, and reinforcement learning
- Practical exercises that students and practitioners can use to apply and develop the concepts found in the book
- Balanced treatments of the mathematics, algorithms, architecture, and code that serve as the foundations of a complete understanding of deep learning

Perfect for undergraduate and graduate students with an interest in deep learning, Deep Learning: Principles and Implementations will also benefit practicing software engineers, faculty, and researchers whose work involves deep learning and related topics.

Kuang Deep Learning jetzt bestellen!

Weitere Infos & Material


Preface

Mathematical notation

Chapter 1 Introduction to Deep Learning

Chapter 2 Linear Regression

Chapter 3 Classification and Logistic Regression

Chapter 4 Basics of Neural Networks

Chapter 5 Practical Considerations in Neural Networks

Chapter 6 Introduction to PyTorch

Chapter 7 Convolutional Neural Networks

Chapter 8 Classical Architectures of CNNs

Chapter 9 Object Detection – YOLO

Chapter 10 Introduction to Probabilistic Generative Models

Chapter 11 Generative Adversarial Networks

Chapter 12 Diffusion Models

Chapter 13 Word Embedding

Chapter 14 Recurrent Neural Networks

Chapter 15 Transformer

Chapter 16 Introduction to Reinforcement Learning

Chapter 17 Deep Q-Learning

Chapter 18 Policy Gradient Methods

Appendix A Mathematics in Machine Learning

Index


Weidong “Will” Kuang, PhD, is an Associate Professor in the Department of Electrical and Computer Engineering at the University of Texas, Rio Grande Valley. He is an expert in signal processing, deep learning, and integrated circuits.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.