Buch, Englisch, 564 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 8657 g
Reihe: Texts in Computer Science
A Methodological Introduction
Buch, Englisch, 564 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 8657 g
Reihe: Texts in Computer Science
ISBN: 978-1-4471-7398-4
Verlag: Springer
Features: provides supplementary material at an associated website; contains numerous classroom-tested examples and definitions throughout the text; presents useful insights into all that is necessary for the successful application of computational intelligence methods; explains the theoretical background underpinning proposed solutions to common problems; discusses in great detail the classical areas of artificial neural networks, fuzzy systems and evolutionary algorithms; reviews the latest developments in the field, covering such topics as ant colonyoptimization and probabilistic graphical models.
Zielgruppe
Graduate
Weitere Infos & Material
Introduction.- Part I: Neural Networks.- Introduction.- Threshold Logic Units.- General Neural Networks.- Multi-Layer Perceptrons.- Radial Basis Function Networks.- Self-Organizing Maps.- Hopfield Networks.- Recurrent Networks.- Mathematical Remarks for Neural Networks.- Part II: Evolutionary Algorithms.- Introduction to Evolutionary Algorithms.- Elements of Evolutionary Algorithms.- Fundamental Evolutionary Algorithms.- Computational Swarm Intelligence.- Part III: Fuzzy Systems.- Fuzzy Sets and Fuzzy Logic.- The Extension Principle.- Fuzzy Relations.- Similarity Relations.- Fuzzy Control.- Fuzzy Data Analysis.- Part IV: Bayes and Markov Networks.- Introduction to Bayes Networks.- Elements of Probability and Graph Theory.- Decompositions.- Evidence Propagation.- Learning Graphical Models.- Belief Revision.- Decision Graphs.