Krull | Idealtheorie | Buch | 978-3-642-87034-7 | sack.de

Buch, Deutsch, Band 46, 160 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 277 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

Krull

Idealtheorie


2. Auflage 1968. Softcover Nachdruck of the original 2. Auflage 1968
ISBN: 978-3-642-87034-7
Verlag: Springer

Buch, Deutsch, Band 46, 160 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 277 g

Reihe: Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge

ISBN: 978-3-642-87034-7
Verlag: Springer


Springer Book Archives

Krull Idealtheorie jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


§ 1. Grundlagen und Ausgangspunkte.- 1. Gruppen mit Operatoren und Ideale.- 2. Prim- und Primärideale. Polynomringe.- 3. Der Zerlegungssatz in abstrakten Ringen.- 4. Zahlentheoretische Grundlagen der Idealtheorie.- 5. Ganz abgeschlossene Integritätsbereiche.- § 2. Abstrakte additive Idealtheorie.- 6. Isolierte Komponentenideale.- 7. Quotientenringe.- 8. Teilerfremde Ideale. Direkte Summen.- 9. Einartige Nullteilerringe.- 10. Einartige Integritätsbereiche.- 11. Operatorgruppen.- 12. Elementarteilergruppen.- 13. Primäre (Nullteiler-) Ringe.- 14. Additive Theorie der O-Ringe.- 15. Prim- und Primäridealketten in O-Ringen.- § 3. Polynomringe.- 16. Integritätsbereiche von endlichem Transzendenzgrad.- 17. Endliche Integritätsbereiche und Polynomringe. Ungemischtheitssätze.- 18. Allgemeine und spezielle Nullstellen eines Polynomideals.- 19. Nullstellentheorie der Potenzreihenideale.- 20. Das „Rechnen“ mit Polynomidealen.- 21. Gruppentheorie der Polynomideale.- 22. Eliminationstheorie.- 23. DerBézoutsche Satz und die Hentzeltschen Nullstellensätze.- 24. Hilberts Funktion.- 25. Das inverse System.- 26. Die Multiplizitätstheorie von vanderWaerden.- 27. Der Grad einer Mannigfaltigkeit und der „allgemeine“ Bézoutsche Satz.- 28. Zweifach projektive Räume.- § 4. Einartige Bereiche.- 29. Endliche algebraische Erweiterung primärer Ringe.- 30. Konstruktiver Aufbau primärer zerlegbarer Ringe.- 31. Die perfekten Hüllen der Integritätsbereiche mit Z.P.I.- 32. Erweiterung eines einartigen Integritätsbereichs zum ganz abgeschlossenen Ring.- 33. Normensätze.- 34. Diskriminantensätze.- 35. Verallgemeinerter Diskriminantensatz. Endlichkeitsprobleme.- § 5. Bewertungstheorie.- 36. Bewertungsringe.- 37. Hauptordnungen.- 38. Z.P.E.-Ringe.- 39. Abschließung eines O-Rings.- 40. Allgemeine Bewertungsringe.- 41. Idealtheorie der Bewertungsringe.- 42. Bewertungen endlicher Erweiterungskörper eines „Grundkörpers“.- § 6. V-Ideale und A-Ideale. Verhalten der Primideale bei Ringerweiterungen.- 43. V-Ideale.- 44. Unendliche algebraische Zahlkörper.- 45. Polynomringsätze und Permanenzsätze.- 46. Multiplikationsringe und A-Ideale.- 47. Einordnung des A-Prozesses in die Bewertungstheorie.- 48. Der Permanenzsatz der Primideale.- 49. Zusammenhang zwischen den Primidealen verschiedener Ringe mit gleichem Quotientenkörper.- 50. Divisoren zweiter Art.- Anhang: Bemerkungen zur Terminologie.- Ergänzungen zur 2. Auflage.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.