Kreinovich / Phuong | Soft Computing: Biomedical and Related Applications | Buch | 978-3-030-76619-1 | sack.de

Buch, Englisch, Band 981, 325 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 670 g

Reihe: Studies in Computational Intelligence

Kreinovich / Phuong

Soft Computing: Biomedical and Related Applications


1. Auflage 2021
ISBN: 978-3-030-76619-1
Verlag: Springer International Publishing

Buch, Englisch, Band 981, 325 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 670 g

Reihe: Studies in Computational Intelligence

ISBN: 978-3-030-76619-1
Verlag: Springer International Publishing


This book lists current and potential biomedical uses of computational intelligence methods. These methods are used in diagnostics and treatment of such diseases as cancer, cardiac diseases, pneumonia, stroke, and COVID-19. Many biomedical problems are difficult; so, often, the current methods are not sufficient, new methods need to be developed. To confidently apply the new methods to critical life-and-death medical situations, it is important to first test these methods on less critical applications. The book describes several such promising new methods that have been tested on problems from agriculture, computer networks, economics and business, pavement engineering, politics, quantum computing, robotics, etc.

This book helps practitioners and researchers to learn more about computational intelligence methods and their biomedical applications—and to further develop this important research direction.

Kreinovich / Phuong Soft Computing: Biomedical and Related Applications jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Part I: Biomedical Applications of Computational Intelligence Techniques.- Bilattice CADIAG-II: Theory and Experimental Results.- A Combination Model of Robust Principal Component Analysis and Multiple Kernel Learning for Cancer Patient Stratification.- Attention U-Net with Active Contour based Hybrid Loss for Brain Tumor Segmentation.- Refining Skip Connections by Fusing Multi-scaled Context in Neural Network for Cardiac MR Image Segmentation.- End-to-end Hand Rehabilitation System with Single-shot Gesture Classification for Stroke Patients.- Feature Selection based on Shapley Additive Explanations on Metagenomic Data for Colorectal Cancer Diagnosis.- Clinical Decision Support Systems for Pneumonia Diagnosis using Gradient-weighted Class Activation Mapping and Convolutional Neural Networks.-  Improving 3D Hand Pose Estimation with Synthetic RGB Image Enhancement using RetinexNet and Dehazing.- Imbalance in Learning Chest X-ray Images for COVID-19 Detection.- Deep Learning based COVID-19 Diagnosis by Joint Classi?cation and Segmentation.- Part II: General Computational Intelligence Techniques and Their Applications.- Why It Is Sufficient to Have Real-Valued Amplitudes in Quantum Computing.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.