E-Book, Englisch, 454 Seiten
Krause / Jäger / Resch High Performance Computing in Science and Engineering ' 04
1. Auflage 2007
ISBN: 978-3-540-26589-4
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2004
E-Book, Englisch, 454 Seiten
ISBN: 978-3-540-26589-4
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents the state-of-the-art in modelling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2004. The reports cover all fields of computational science and engineering ranging from computational fluid dynamics via computational physics and chemistry to computer science. Special emphasis is given to industrially relevant applications. Presenting results for both vector-systems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. In the light of the success of the Japanese Earth-Simulator this book may serve as a guide book for a US response. The book covers the main methods in high performance computing. Its outstanding results in achieving highest performance for production codes are of particular interest for both the scientist and the engineer. The book comes with a wealth of coloured illustrations and tables of results.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;9
3;Physics;12
3.1;Chain Conformations and Phase Behavior in Confined Polymer Blends;14
3.1.1;1 Introduction;14
3.1.2;2 Models and techniques;15
3.1.3;3 Results;16
3.1.4;4 Conclusion and outlook;24
3.1.5;References;25
3.2;Thermal Quark Anti- quark Free Energies, Energies and Screening in Hot SU( 3) Gauge Theory;27
3.2.1;1 Introduction;27
3.2.2;2 Lattice calculation of the free energy of a static quark- ant iquark pair;28
3.2.3;3 Numerical results;31
3.2.4;4 The renormalized Polyakov loop;33
3.2.5;5 Conclusions;34
3.2.6;References;35
3.3;Simulations of Particle Suspensions at the Institut für Computerphysik;36
3.3.1;1 Introduction;36
3.3.2;2 Transport Phenomena and Structuring in Shear Flow of Suspensions near Solid Walls;36
3.3.3;3 Simulations of pneumatic transport;40
3.3.4;4 Conclusions;46
3.3.5;References;46
3.4;Numerical Modelling of Convection and Dynamo Processes in Fully Convective Stars;48
3.4.1;1 Introduction;48
3.4.2;2 Equations;48
3.4.3;3 Code;50
3.4.4;4 Platforms;50
3.4.5;5 Results;50
3.4.6;6 Conclusion;54
3.5;Large Scale Simulation of a Cooled, Pulsed Jet in Symbiotic Stars;55
3.5.1;1 Introduction;55
3.5.2;2 The numerical models;55
3.5.3;3 Validating the cooling treatment;58
3.5.4;4 Jet structure;59
3.5.5;5 Jet emission;63
3.5.6;6 Discussion;64
3.5.7;References;64
3.6;Image States on the LiF( 001)-( 1X1) Insulator Surface;65
3.6.1;1 Introduction;65
3.6.2;2 Computational Approach;66
3.6.3;3 Results and Discussion;67
3.6.4;References;73
3.7;Interaction of Jets with Galactic Winds;75
3.7.1;1 Introduction;75
3.7.2;2 Details of the interaction of an extragalactic jet with a galactic wind.;76
3.7.3;3 Computational aspects;78
3.7.4;4 Simulation results;81
3.7.5;5 Discussion;85
3.7.6;References;86
4;Solid State Physics;87
4.1;Numerical Studies of Model Colloids and Nano- Wires;90
4.1.1;1 Introduction and general remarks;90
4.1.2;2 Elastic constants from microscopic strain fluctuations;91
4.1.3;3 Phase transitions of model colloids in external periodic light fields;95
4.1.4;4 Electronic and structural properties of nano wires and clusters ( HLRS and SSC);97
4.1.5;Acknowledgements;100
4.1.6;References;100
4.2;Ab Initio Simulation of Clusters: Relativistic Effects in Structure and Bonding of Noble Metal Nanoparticles;102
4.2.1;1 Introduction;102
4.2.2;2 The Born- Oppenheimer- Spin- Density- Molecular- Dynamics- Method;103
4.2.3;3 Experiments;104
4.2.4;4 Computational results;106
4.2.5;5 Summary;111
4.2.6;Acknolegdement;111
4.2.7;References;111
4.3;The Mixed Akali Effect in Ternary Alkali Silicate Melts: Insight from Molecular Dynamics Computer simulations;113
4.3.1;1 Introduction;113
4.3.2;2 Details of the Simulation;114
4.3.3;3 Intermediate Range Order;115
4.3.4;4 Channel Diffusion;117
4.3.5;5 Summary;119
4.3.6;Acknowledgments;119
4.3.7;References;119
4.4;Methylchloride Adsorption on Si(OOl) - Electronic Properties;121
4.4.1;1 Introduction;121
4.4.2;2 Computational Method;122
4.4.3;3 Results and discussion;124
4.4.4;4 Summary;132
4.4.5;References;133
4.5;Dynamics and Criticality of Correlated Electrons and Quantum Gases;134
4.5.1;1 Introduction;134
4.5.2;2 Local Mott metal- insulator transition for fermions;135
4.5.3;3 Dynamics of the one- dimensional nearest- neighbor t- J model;139
4.5.4;4 Conclusions;144
4.5.5;References;144
4.6;Electron- doping Evolution of the Quasiparticle Band of the Cuprates;146
4.6.1;1 Introduction;146
4.6.2;2 Model;147
4.6.3;3 Numerical Technique;148
4.6.4;4 Results and Discussion;149
4.6.5;5 Conclusion;154
4.6.6;Acknowledgements;155
4.6.7;References;155
5;Computational Fluid Dynamics;157
5.1;Investigation of Hypersonic Flat- plate Boundary- layer Transition by Direct Numerical Simulation;159
5.1.1;1 Introduction;159
5.1.2;2 Numerical procedure;160
5.1.3;3 Results;162
5.1.4;4 Computational efficiency;164
5.1.5;5 Conclusions and outlook;165
5.1.6;Acknowledgements;165
5.1.7;References;166
5.2;DNS Study of spatial discrete suction for Laminar Flow Control;167
5.2.1;1 Introduction;167
5.2.2;2 Numerical Method;168
5.2.3;3 Computational Results;171
5.2.4;4 Results;172
5.2.5;5 Conclusions;177
5.2.6;Acknowledgements;178
5.2.7;References;178
5.3;LES of Shock Wave/ Turbulent Boundary Layer Interaction;180
5.3.1;1 Introduction;180
5.3.2;2 Simulation method;181
5.3.3;3 Numerical results;183
5.3.4;4 Decompression corner;189
5.3.5;5 Computational details;189
5.3.6;6 Conclusions;190
5.3.7;References;190
5.4;Large- eddy Simulation of Incompressible Flow Around a Sphere with Trip Wire at Re = 50 000;192
5.4.1;1 Introduction;192
5.4.2;2 Numerical method;193
5.4.3;3 Problem description;195
5.4.4;4 Computational aspects;196
5.4.5;5 Results;196
5.4.6;6 Conclusions;201
5.4.7;Acknowledgements;202
5.4.8;References;202
5.5;LES of Passive Heat Transfer in a Turbine Cascade;204
5.5.1;1 Introduction;204
5.5.2;2 Computational details;205
5.5.3;3 Results;209
5.5.4;4 Conclusions;213
5.5.5;Acknowledgements;214
5.5.6;References;214
5.6;Enhanced Mixing in Supersonic Combustion;216
5.6.1;1 Introduction;216
5.6.2;2 Governing Equations;217
5.6.3;3 Supersonic Combustor;218
5.6.4;4 Hydrogen Injection;219
5.6.5;5 Modification of injection area;220
5.6.6;6 Results of the efficiency improvement study;220
5.6.7;7 Conclusions;225
5.6.8;Acknowledgments;225
5.6.9;References;226
5.7;Numerical Study of the Influence of Dynamic Pressure and Deflected Ailerons on the Deformation of a High Speed Wing Model;227
5.7.1;1 Introduction;227
5.7.2;2 Physical Models and Numerical Methods;228
5.7.3;3 Static Aeroelastic Analysis;229
5.7.4;4 Results;231
5.7.5;5 Conclusions;236
5.7.6;6 Code performance;237
5.7.7;Acknowledgements;237
5.7.8;References;238
5.8;Numerical High Lift Research II/ III;239
5.8.1;1 Introduction;239
5.8.2;2 Wing- Root Aerodynamics at High Lift;240
5.8.3;3 Wake Vortex Simulation;245
5.8.4;4 Propeller- Wing Interaction;247
5.8.5;5 Numerical Optimization of High Lift Configurations;252
5.8.6;6 Summary;259
5.8.7;Acknowledgments;259
5.8.8;References;260
5.9;Numerical Simulation of Electrostatic Spray- painting Processes in the Automotive Industry;262
5.9.1;1 Introduction;262
5.9.2;2 Basic numerical method;264
5.9.3;3 Simulation of spray painting with a high- speed rotary bell using external charging;266
5.9.4;4 Powder coating simulation using a corona spray gun;272
5.9.5;5 Summary and outlook;273
5.9.6;References;275
5.10;Combination of Detailed CFD Simulations Using the Lattice Boltzmann Method and Experimental Measurements Using the NMR/ MRI Technique;277
5.10.1;1 Introduction;277
5.10.2;2 Lattice Boltzmann Approach;279
5.10.3;3 Basic Principles of Nuclear Magnetic Resonance;283
5.10.4;4 Selected Results;284
5.10.5;5 Recent experience with current HPC systems;288
5.10.6;Acknowledgments;290
5.10.7;References;290
5.11;Recent Improvements of the Parallel- Multiblock URANUS 3D Nonequilibrium Code;293
5.11.1;1 Introduction;293
5.11.2;2 URANUS Code;294
5.11.3;3 X- 38 Simulations;302
5.11.4;4 Performance;306
5.11.5;5 Summary;307
5.11.6;Acknowledgements;309
5.11.7;References;309
6;Chemistry;311
6.1;The Iron ( III) Catalyzed Michael Reaction - Reactivity Differences Between Several Different Acceptors;314
6.1.1;1 Introduction;314
6.1.2;2 Methods;315
6.1.3;3 Results;316
6.1.4;4 Technical section;319
6.1.5;5 Acknowledgements;320
6.1.6;References;320
6.2;Potential Energy Surfaces of Unusual Double Proton Transfer Reactions;321
6.2.1;1 Introduction;321
6.2.2;2 Computational Details;322
6.2.3;3 Results;324
6.2.4;4 Conclusions and Outlook;327
6.2.5;5 Acknowledgments;328
6.2.6;References;329
6.3;Quantum Reactive Scattering for Ion- neutral Collisions: The H^- system;330
6.3.1;1 Introduction;330
6.3.2;2 Quantum dynamics;331
6.3.3;3 Applications;334
6.3.4;4 Results and discussion;334
6.3.5;5 Summary;341
6.3.6;Acknowledgments;343
6.3.7;References;343
6.4;Glycine at the Water / Pyrite Interface Under Extreme Pressure / Temperature Conditions;345
6.4.1;1 Introduction;345
6.4.2;2 Computational details;346
6.4.3;3 Assessing the functional and the pseudopotentials;346
6.4.4;4 Results and discussion;348
6.4.5;5 Conclusions;351
6.4.6;References;351
7;Computer Science;353
7.1;Performance Analysis of NEC Computers by Using the PARbench Benchmark System;354
7.1.1;1 Introduction;354
7.1.2;2 PARbench;354
7.1.3;4 Using PARbench in a batch driven system;360
7.1.4;5 Summary;363
7.1.5;Literature;364
7.2;SKaMPI - Towards Version 5;365
7.2.1;1 Introduction;365
7.2.2;2 Overview of the New SKaMPI;366
7.2.3;3 Virtual Topologies in SKaMPI- 4;366
7.2.4;4 Accelerating Irregular Collective Message Exchange;369
7.2.5;5 Towards SKaMPI- 5;371
7.2.6;6 Conclusion;375
7.2.7;References;376
8;Earth Sciences;377
8.1;Numerical Considerations of Fluid Effects on Wave Propagation;378
8.1.1;1 Introduction;378
8.1.2;2 The synthetic fracture models;379
8.1.3;3 Modelling procedure;380
8.1.4;4 Numerical Results;382
8.1.5;5 Conclusions;386
8.1.6;Acknowledgements;387
8.1.7;References;387
8.2;Toward a Therraocheniical Model of the Evolution of the Earth's Mantle;388
8.2.1;1 Introduction;389
8.2.2;2 Theory of model K3;394
8.2.3;3 Results and discussion of the convection- fractionation models K3A and K3B;405
8.2.4;4 Theory of model S2;419
8.2.5;5 Results of Model S2;429
8.2.6;6 Conclusions;432
8.2.7;7 Computational aspects;435
8.2.8;Acknowledgements;436
8.2.9;A Appendix: Non- dimensional Variables;437
8.2.10;B Appendix: Variation of the parameters of K3A and K3B;438
8.2.11;C Appendix: Thermodynamics and the Ullmann- Pan'kov equation of state;439
8.2.12;References;442




