Buch, Englisch, 320 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 646 g
Buch, Englisch, 320 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 646 g
ISBN: 978-0-8493-7155-4
Verlag: CRC Press
Ever since the groundbreaking work of J.J. Kohn in the early 1960s, there has been a significant interaction between the theory of partial differential equations and the function theory of several complex variables. Partial Differential Equations and Complex Analysis explores the background and plumbs the depths of this symbiosis.
The book is an excellent introduction to a variety of topics and presents many of the basic elements of linear partial differential equations in the context of how they are applied to the study of complex analysis. The author treats the Dirichlet and Neumann problems for elliptic equations and the related Schauder regularity theory, and examines how those results apply to the boundary regularity of biholomorphic mappings. He studies the ?-Neumann problem, then considers applications to the complex function theory of several variables and to the Bergman projection.
Zielgruppe
Professional Practice & Development
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionentheorie, Komplexe Analysis
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
The Dirichlet Problem in the Complex Plane Review of Fourier Analysis Pseudodifferential Operators Elliptic Operators Elliptic Boundary Value Problems A Degenerate Elliptic Boundary Value Problem The ?- Neumann Problem Applications of the ?- Neumann Problem The Local Solvability Issue and a Look Back.