Buch, Englisch, Band 20, 124 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 3317 g
Reihe: Studies in Big Data
Buch, Englisch, Band 20, 124 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 3317 g
Reihe: Studies in Big Data
ISBN: 978-3-319-33381-6
Verlag: Springer International Publishing
introduces numerous algorithmic hybridizations between both worlds that show
how machine learning can improve and support evolution strategies. The set of
methods comprises covariance matrix estimation, meta-modeling of fitness and
constraint functions, dimensionality reduction for search and visualization of
high-dimensional optimization processes, and clustering-based niching. After
giving an introduction to evolution strategies and machine learning, the book
builds the bridge between both worlds with an algorithmic and experimental
perspective. Experiments mostly employ a (1+1)-ES and are implemented in Python
using the machine learning library scikit-learn. The examples are conducted on
typical benchmark problems illustrating algorithmic concepts and their
experimental behavior. The book closes with a discussion of related lines of
research.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computersimulation & Modelle, 3-D Graphik
- Naturwissenschaften Physik Angewandte Physik Soziophysik, Wirtschaftsphysik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Technik Allgemein Modellierung & Simulation
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
Part I Evolution Strategies.- Part II Machine Learning.- Part III Supervised Learning.