Krají¿ek / Krajícek | Forcing with Random Variables and Proof Complexity | Buch | 978-0-521-15433-8 | sack.de

Buch, Englisch, Band 382, 264 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 434 g

Reihe: London Mathematical Society Lecture Note Series

Krají¿ek / Krajícek

Forcing with Random Variables and Proof Complexity


Erscheinungsjahr 2010
ISBN: 978-0-521-15433-8
Verlag: Cambridge University Press

Buch, Englisch, Band 382, 264 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 434 g

Reihe: London Mathematical Society Lecture Note Series

ISBN: 978-0-521-15433-8
Verlag: Cambridge University Press


This book introduces a new approach to building models of bounded arithmetic, with techniques drawn from recent results in computational complexity. Propositional proof systems and bounded arithmetics are closely related. In particular, proving lower bounds on the lengths of proofs in propositional proof systems is equivalent to constructing certain extensions of models of bounded arithmetic. This offers a clean and coherent framework for thinking about lower bounds for proof lengths, and it has proved quite successful in the past. This book outlines a brand new method for constructing models of bounded arithmetic, thus for proving independence results and establishing lower bounds for proof lengths. The models are built from random variables defined on a sample space which is a non-standard finite set and sampled by functions of some restricted computational complexity. It will appeal to anyone interested in logical approaches to fundamental problems in complexity theory.

Krají¿ek / Krajícek Forcing with Random Variables and Proof Complexity jetzt bestellen!

Weitere Infos & Material


Preface
Acknowledgements
Introduction
Part I. Basics: 1. The definition of the models
2. Measure on ß
3. Witnessing quantifiers
4. The truth in N and the validity in K(F)
Part II. Second Order Structures: 5. Structures K(F,G)
Part III. AC0 World: 6. Theories I?0, I?0(R) and V10
7. Shallow Boolean decision tree model
8. Open comprehension and open induction
9. Comprehension and induction via quantifier elimination: a general reduction
10. Skolem functions, switching lemma, and the tree model
11. Quantifier elimination in K(Ftree,Gtree)
12. Witnessing, independence and definability in V10
Part IV. AC0(2) World: 13. Theory Q2V10
14. Algebraic model
15. Quantifier elimination and the interpretation of Q2
16. Witnessing and independence in Q2V10
Part V. Towards Proof Complexity: 17. Propositional proof systems
18. An approach to lengths-of-proofs lower bounds
19. PHP principle
Part VI. Proof Complexity of Fd and Fd(+): 20. A shallow PHP model
21. Model K(Fphp,Gphp) of V10
22. Algebraic PHP model?
Part VII. Polynomial-Time and Higher Worlds: 23. Relevant theories
24. Witnessing and conditional independence results
25. Pseudorandom sets and a Löwenheim–Skolem phenomenon
26. Sampling with oracles
Part VIII. Proof Complexity of EF and Beyond: 27. Fundamental problems in proof complexity
28. Theories for EF and stronger proof systems
29. Proof complexity generators: definitions and facts
30. Proof complexity generators: conjectures
31. The local witness model
Appendix. Non-standard models and the ultrapower construction
Standard notation, conventions and list of symbols
References
Name index
Subject index.


Krajícek, Jan
Jan Krajícek is a Professor of Mathematical Logic at Charles University in Prague. He is currently also affiliated with the Academy of Sciences of the Czech Republic.

Jan Krajícek is a Professor of Mathematical Logic at Charles University in Prague. He is currently also affiliated with the Academy of Sciences of the Czech Republic.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.