E-Book, Deutsch, Band 1, 308 Seiten, eBook
Reihe: Aspects of Mathematics
Kraft Geometrische Methoden in der Invariantentheorie
1984
ISBN: 978-3-322-83813-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Deutsch, Band 1, 308 Seiten, eBook
Reihe: Aspects of Mathematics
ISBN: 978-3-322-83813-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Einführung.- I. Einführende Beispiele.- 1. Euklidische Geometrie.- 2. Quadratische Formen.- 3. Konjugationsklassen von Matrizen.- 4. Invarianten mehrerer Vektoren.- 5. Nullformen.- 6. Assoziierte Kegel und Deformationen.- 7. Ternäre kubische Formen.- II. Gruppenoperationen, Invariantenringe und Quotienten.- 1. Algebraische Gruppen.- 2. Gruppenoperationen und lineare Darstellungen.- 3. Quotienten bei linear reduktiven Gruppen.- 4. Beispiele und Anwendungen.- III. Darstellungstheorie und die Methode der U-Invarianten.- 1. Darstellungstheorie linear reduktiver Gruppen.- 2. Das Hilbertkriterium.- 3. U-Invarianten und Normalitäts fragen.- 4. SL-Einbettungen.- Anhang I. Einige Grundlagen aus der algebraischen Geometrie.- 1. Affine Varietäten.- 2. Reguläre Abbildungen.- 3. Dimension.- 4. Normale Varietäten.- 5. Tangential räum und reguläre Punkte.- 6. Hyperflachen und Divisoren.- 7. C-Topologie auf affinen Varietäten.- Anhang II. Lineare Reduktivität der klassischen Gruppen.- 1. Topologische Gruppen, Liegruppen.- 2. Klassische Gruppen.- 3. Haarsches Mass auf kompakten Gruppen.- 4. Volle Reduzibilität der Darstellungen kompakter Gruppen.- 5. Lineare Reduktivität der klassischen Gruppen.- 6. Maximal kompakte Untergruppen.- 7. Cartan-und Iwasawazerlegung.- Symbole und Notationen.- Register.