Kraft | Geometrische Methoden in der Invariantentheorie | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 1, 308 Seiten, eBook

Reihe: Aspects of Mathematics

Kraft Geometrische Methoden in der Invariantentheorie


1984
ISBN: 978-3-322-83813-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, Band 1, 308 Seiten, eBook

Reihe: Aspects of Mathematics

ISBN: 978-3-322-83813-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Kraft Geometrische Methoden in der Invariantentheorie jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Einführung.- I. Einführende Beispiele.- 1. Euklidische Geometrie.- 2. Quadratische Formen.- 3. Konjugationsklassen von Matrizen.- 4. Invarianten mehrerer Vektoren.- 5. Nullformen.- 6. Assoziierte Kegel und Deformationen.- 7. Ternäre kubische Formen.- II. Gruppenoperationen, Invariantenringe und Quotienten.- 1. Algebraische Gruppen.- 2. Gruppenoperationen und lineare Darstellungen.- 3. Quotienten bei linear reduktiven Gruppen.- 4. Beispiele und Anwendungen.- III. Darstellungstheorie und die Methode der U-Invarianten.- 1. Darstellungstheorie linear reduktiver Gruppen.- 2. Das Hilbertkriterium.- 3. U-Invarianten und Normalitäts fragen.- 4. SL-Einbettungen.- Anhang I. Einige Grundlagen aus der algebraischen Geometrie.- 1. Affine Varietäten.- 2. Reguläre Abbildungen.- 3. Dimension.- 4. Normale Varietäten.- 5. Tangential räum und reguläre Punkte.- 6. Hyperflachen und Divisoren.- 7. C-Topologie auf affinen Varietäten.- Anhang II. Lineare Reduktivität der klassischen Gruppen.- 1. Topologische Gruppen, Liegruppen.- 2. Klassische Gruppen.- 3. Haarsches Mass auf kompakten Gruppen.- 4. Volle Reduzibilität der Darstellungen kompakter Gruppen.- 5. Lineare Reduktivität der klassischen Gruppen.- 6. Maximal kompakte Untergruppen.- 7. Cartan-und Iwasawazerlegung.- Symbole und Notationen.- Register.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.