E-Book, Englisch, 419 Seiten
Reihe: Environmental Sciences
Koskinen Physics of Space Storms
1. Auflage 2011
ISBN: 978-3-642-00319-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
From the Solar Surface to the Earth
E-Book, Englisch, 419 Seiten
Reihe: Environmental Sciences
ISBN: 978-3-642-00319-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This unique , authoritative book introduces and accurately depicts the current state-of-the art in the field of space storms. Professor Koskinen, renowned expert in the field, takes the basic understanding of the system, together with the pyhsics of space plasmas, and produces a treatment of space storms. He combines a solid base describing space physics phenomena with a rigourous theoretical basis. The topics range from the storms in the solar atmosphere through the solar wind, magnetosphere and ionosphere to the production of the storm-related geoelectric field on the ground. The most up-to-date information available ist presented in a clear, analytical and quantitative way. The book is divided into three parts. Part 1 is a phenomenological introduction to space weather from the Sun to the Earth. Part 2 comprehensively presents the fundamental concepts of space plasma physics. It consists of discussions of fundamental concepts of plasma physics, starting from underlying electrodynamics and statistical physics of charged particles and continuing to single particle motion in homogeneous electromagnetic fields, waves in cold plasma approximation, Vlasov theory, magnetohydrodynamics, instabilities in space plasmas, reconnection and dynamo. Part 3 bridges the gap between the fundamental plasma physics and research level physics of space storms. This part discusses radiation and scattering processes, transport and diffiusion, shocks and shock acceleration, storms on the Sun, in the magnetosphere, the coupling to the atmosphere and ground. The book is concluded wtih a brief review of what is known of space stroms on other planets. One tool for building this briege ist extensive cross-referencing between the various chapters. Exercise problems of varying difficulty are embedded within the main body of the text.
Autoren/Hrsg.
Weitere Infos & Material
1;Physics of Space Storms;3
1.1;Contents;5
1.2;Preface;11
1.3;Units and Notation;17
1.4;1. Stormy Tour from the Sun to the Earth;19
1.4.1;1.1 Source of Space Storms: the Sun;19
1.4.1.1;1.1.1 The Sun as a star;20
1.4.1.2;1.1.2 Solar spectrum;23
1.4.1.3;1.1.3 Solar atmosphere;25
1.4.1.4;1.1.4 Rotation of the Sun;26
1.4.1.5;1.1.5 Sunspots and solar magnetism;29
1.4.1.6;1.1.6 Coronal activity;34
1.4.2;1.2 The Carrier to the Earth: the Solar Wind;39
1.4.2.1;1.2.1 Elements of solar wind expansion;39
1.4.2.2;1.2.2 The interplanetary magnetic field;43
1.4.2.3;1.2.3 The observed structure of the solar wind;46
1.4.2.4;1.2.4 Perturbed solar wind;47
1.4.3;1.3 The Magnetosphere;50
1.4.3.1;1.3.1 Formation of the Earth’s magnetosphere;50
1.4.3.2;1.3.2 The outer magnetosphere;52
1.4.3.3;1.3.3 The inner magnetosphere;55
1.4.3.4;1.3.4 Magnetospheric convection;58
1.4.3.5;1.3.5 Origins of magnetospheric plasma;62
1.4.3.6;1.3.6 Convection and electric fields;63
1.4.4;1.4 The Upper Atmosphere and the Ionosphere;66
1.4.4.1;1.4.1 The thermosphere and the exosphere;67
1.4.4.2;1.4.2 Structure of the ionosphere;68
1.4.4.3;1.4.3 Electric currents in the polar ionosphere;69
1.4.5;1.5 Space Storms Seen from the Ground;72
1.4.5.1;1.5.1 Measuring the strength of space storms;73
1.4.5.2;1.5.2 Geomagnetically induced currents;75
1.5;2. Physical Foundations;77
1.5.1;2.1 What is Plasma?;77
1.5.1.1;2.1.1 Debye shielding;78
1.5.1.2;2.1.2 Plasma oscillations;79
1.5.1.3;2.1.3 Gyro motion;80
1.5.1.4;2.1.4 Collisions;81
1.5.2;2.2 Basic Electrodynamics;82
1.5.2.1;2.2.1 Maxwell’s equations;82
1.5.2.2;2.2.2 Lorentz force;84
1.5.2.3;2.2.3 Potentials;84
1.5.2.4;2.2.4 Energy conservation;88
1.5.2.5;2.2.5 Charged particles in electromagnetic fields;89
1.5.3;2.3 Tools of Statistical Physics;91
1.5.3.1;2.3.1 Plasma in thermal equilibrium;91
1.5.3.2;2.3.2 Derivation of Vlasov and Boltzmann equations;93
1.5.3.3;2.3.3 Macroscopic variables;96
1.5.3.4;2.3.4 Derivation of macroscopic equations;98
1.5.3.5;2.3.5 Equations of magnetohydrodynamics;100
1.5.3.6;2.3.6 Double adiabatic theory;104
1.6;3. Single Particle Motion;107
1.6.1;3.1 Magnetic Drifts;107
1.6.2;3.2 Adiabatic Invariants;111
1.6.2.1;3.2.1 The first adiabatic invariant;111
1.6.2.2;3.2.2 Magnetic mirror and magnetic bottle;113
1.6.2.3;3.2.3 The second adiabatic invariant;114
1.6.2.4;3.2.4 Betatron and Fermi acceleration;114
1.6.2.5;3.2.5 The third adiabatic invariant;115
1.6.3;3.3 Motion in the Dipole Field;116
1.6.4;3.4 Motion Near a Current Sheet;121
1.6.4.1;3.4.1 The Harris model;122
1.6.4.2;3.4.2 Neutral sheet with a constant electric field;124
1.6.4.3;3.4.3 Current sheet with a small perpendicular magnetic field component;125
1.6.5;3.5 Motion in a Time-dependent Electric Field;126
1.6.5.1;3.5.1 Slow time variations;126
1.6.5.2;3.5.2 Time variations in resonance with gyro motion;126
1.6.5.3;3.5.3 High-frequency fields;127
1.7;4. Waves in Cold Plasma Approximation;130
1.7.1;4.1 Basic Concepts;130
1.7.1.1;4.1.1 Waves in linear media;130
1.7.1.2;4.1.2 Wave polarization;134
1.7.1.3;4.1.3 Reflection and refraction;135
1.7.2;4.2 RadioWave Propagation in the Ionosphere;138
1.7.2.1;4.2.1 Isotropic, lossless ionosphere;138
1.7.2.2;4.2.2 Weakly inhomogeneous ionosphere;141
1.7.2.3;4.2.3 Inclusion of collisions;145
1.7.2.4;4.2.4 Inclusion of the magnetic field;146
1.7.3;4.3 General Treatment of Cold Plasma Waves;147
1.7.3.1;4.3.1 Dispersion equation for cold plasma waves;147
1.7.3.2;4.3.2 Parallel propagation (. = 0);150
1.7.3.3;4.3.3 Perpendicular propagation (. = p/2);153
1.7.3.4;4.3.4 Propagation at arbitrary angles;154
1.8;5. Vlasov Theory;157
1.8.1;5.1 Properties of the Vlasov Equation;157
1.8.2;5.2 Landau’s Solution;159
1.8.3;5.3 Normal Modes in a Maxwellian Plasma;164
1.8.3.1;5.3.1 The plasma dispersion function;164
1.8.3.2;5.3.2 The Langmuir wave;165
1.8.3.3;5.3.3 The ion–acoustic wave;166
1.8.3.4;5.3.4 Macroscopic derivation of Langmuir and ion–acoustic modes;167
1.8.4;5.4 Physics of Landau Damping;169
1.8.5;5.5 Vlasov Theory in a General Equilibrium;171
1.8.6;5.6 Uniformly Magnetized Plasma;173
1.8.6.1;5.6.1 Perpendicular propagation (. = p/2);175
1.8.6.2;5.6.2 Parallel propagation (. = 0);177
1.8.6.3;5.6.3 Propagation at arbitrary angles;177
1.9;6. Magnetohydrodynamics;179
1.9.1;6.1 From Hydrodynamics to Conservative MHD Equations;179
1.9.2;6.2 Convection and Diffusion;182
1.9.3;6.3 Frozen-in Field Lines;184
1.9.4;6.4 Magnetohydrostatic Equilibrium;187
1.9.5;6.5 Field-aligned Currents;189
1.9.5.1;6.5.1 Force-free fields;189
1.9.5.2;6.5.2 Grad–Shafranov equation;192
1.9.5.3;6.5.3 General properties of force-free fields;193
1.9.5.4;6.5.4 FACs and the magnetosphere–ionosphere coupling;194
1.9.5.5;6.5.5 Magnetic helicity;196
1.9.6;6.6 Alfvén Waves;199
1.9.6.1;6.6.1 Dispersion equation of MHD waves;199
1.9.6.2;6.6.2 MHD wave modes;200
1.9.7;6.7 Beyond MHD;202
1.9.7.1;6.7.1 Quasi-neutral hybrid approach;203
1.9.7.2;6.7.2 Kinetic Alfvén waves;205
1.10;7. Space Plasma Instabilities;207
1.10.1;7.1 Beam–plasma Modes;208
1.10.1.1;7.1.1 Two-stream instability;209
1.10.1.2;7.1.2 Buneman instability;211
1.10.2;7.2 Macroinstabilities;212
1.10.2.1;7.2.1 Rayleigh–Taylor instability;212
1.10.2.2;7.2.2 Farley–Buneman instability;215
1.10.2.3;7.2.3 Ballooning instability;216
1.10.2.4;7.2.4 Kelvin–Helmholtz instability;218
1.10.2.5;7.2.5 Firehose and mirror instabilities;220
1.10.2.6;7.2.6 Flux tube instabilities;222
1.10.3;7.3 Microinstabilities;223
1.10.3.1;7.3.1 Monotonically decreasing distribution function;223
1.10.3.2;7.3.2 Multiple-peaked distributions;224
1.10.3.3;7.3.3 Ion–acoustic instability;226
1.10.3.4;7.3.4 Electrostatic ion cyclotron instability;228
1.10.3.5;7.3.5 Current-driven instabilities perpendicular to B;229
1.10.3.6;7.3.6 Electromagnetic cyclotron instabilities;231
1.10.3.7;7.3.7 Ion beam instabilities;233
1.11;8. Magnetic Reconnection;235
1.11.1;8.1 Basics of Reconnection;235
1.11.1.1;8.1.1 Classical MHD description of reconnection;236
1.11.1.2;8.1.2 The Sweet–Parker model;237
1.11.1.3;8.1.3 The Petschek model;239
1.11.1.4;8.1.4 Asymmetric reconnection;241
1.11.2;8.2 Collisionless Reconnection;243
1.11.2.1;8.2.1 The tearing mode;244
1.11.2.2;8.2.2 The collisionless tearing mode;245
1.11.2.3;8.2.3 Tearing mode or something else?;247
1.11.2.4;8.2.4 The Hall effect;248
1.11.3;8.3 Reconnection and Dynamo;252
1.11.3.1;8.3.1 Current generation at the magnetospheric boundary;252
1.11.3.2;8.3.2 Elements of solar dynamo theory;254
1.11.3.3;8.3.3 The kinematic a. dynamo;257
1.12;9. Plasma Radiation and Scattering;260
1.12.1;9.1 Simple Antennas;260
1.12.2;9.2 Radiation of a Moving Charge;263
1.12.3;9.3 Bremsstrahlung;266
1.12.4;9.4 Cyclotron and Synchrotron Radiation;270
1.12.5;9.5 Scattering from Plasma Fluctuations;273
1.12.6;9.6 Thomson Scattering;276
1.13;10. Transport and Diffusion in Space Plasmas;281
1.13.1;10.1 Particle Flux and Phase Space Density;281
1.13.2;10.2 Coordinates for Particle Flux Description;283
1.13.3;10.3 Elements of Fokker–Planck Theory;285
1.13.4;10.4 Quasi-Linear Diffusion Through Wave–Particle Interaction;287
1.13.5;10.5 Kinetic Equation with Fokker–Planck Terms;290
1.14;11. Shocks and Shock Acceleration;292
1.14.1;11.1 Basic Shock Formation;293
1.14.1.1;11.1.1 Steepening of continuous structures;293
1.14.1.2;11.1.2 Hydrodynamic shocks;295
1.14.2;11.2 Shocks in MHD;296
1.14.2.1;11.2.1 Perpendicular shocks;296
1.14.2.2;11.2.2 Oblique shocks;298
1.14.2.3;11.2.3 Rotational and tangential discontinuities;300
1.14.2.4;11.2.4 Thickness of the shock front;301
1.14.2.5;11.2.5 Collisionless shock wave structure;303
1.14.3;11.3 Particle Acceleration in Shock Waves;306
1.14.3.1;11.3.1 Shock drift acceleration;307
1.14.3.2;11.3.2 Diffusive shock acceleration;308
1.14.3.3;11.3.3 Shock surfing acceleration;310
1.15;12. Storms on the Sun;312
1.15.1;12.1 Prominences and Coronal Loops;313
1.15.2;12.2 Radio Storms on the Sun;315
1.15.2.1;12.2.1 Classification of radio emissions;316
1.15.2.2;12.2.2 Physical mechanisms for solar radio emissions;317
1.15.3;12.3 Solar Flares;320
1.15.3.1;12.3.1 Observational characteristics of solar flares;320
1.15.3.2;12.3.2 Physics of solar flares;324
1.15.4;12.4 Coronal Mass Ejections;327
1.15.4.1;12.4.1 CMEs near the Sun;328
1.15.4.2;12.4.2 Propagation time to 1 AU;330
1.15.4.3;12.4.3 Magnetic structure of ICMEs;331
1.15.5;12.5 CMEs, Flares and Particle Acceleration;333
1.16;13. Magnetospheric Storms and Substorms;336
1.16.1;13.1 What are Magnetic Storms and Substorms?;336
1.16.1.1;13.1.1 Storm basics;337
1.16.1.2;13.1.2 The concept of substorm;339
1.16.1.3;13.1.3 Observational signatures of substorms;339
1.16.2;13.2 Physics of Substorm Onset;346
1.16.2.1;13.2.1 The outside–in view;347
1.16.2.2;13.2.2 The inside–out view;352
1.16.2.3;13.2.3 External triggering of substorm expansion;355
1.16.2.4;13.2.4 Timing of substorm onset;355
1.16.3;13.3 Storm-Time Activity;358
1.16.3.1;13.3.1 Steady magnetospheric convection;358
1.16.3.2;13.3.2 Substorm-like activations and sawtooth Events;361
1.16.4;13.4 ICME–Storm Relationships;363
1.16.4.1;13.4.1 Geoeffectivity of an ICME;363
1.16.4.2;13.4.2 Different response to different drivers;365
1.16.5;13.5 Storms Driven by Fast Solar Wind;367
1.16.5.1;13.5.1 27-day recurrence of magnetospheric activity;367
1.16.5.2;13.5.2 Differences from ICME-driven storms;368
1.16.6;13.6 Energy Budgets of Storms and Substorms;370
1.16.6.1;13.6.1 Energy supply;370
1.16.6.2;13.6.2 Ring current energy;371
1.16.6.3;13.6.3 Ionospheric dissipation;373
1.16.6.4;13.6.4 Energy consumption farther in the magnetosphere;375
1.16.6.5;13.6.5 Energy transfer across the magnetopause;375
1.16.7;13.7 Superstorms and Polar Cap Potential Saturation;378
1.16.7.1;13.7.1 Quantification of the saturation;379
1.16.7.2;13.7.2 Hill–Siscoe formulation;379
1.16.7.3;13.7.3 The Alfv´en wing approach;381
1.16.7.4;13.7.4 Magnetosheath force balance;382
1.17;14. Storms in the Inner Magnetosphere;384
1.17.1;14.1 Dynamics of the Ring Current;385
1.17.1.1;14.1.1 Asymmetric structure of the ring current;385
1.17.1.2;14.1.2 Sources of the enhanced ring current;386
1.17.1.3;14.1.3 Role of substorms in storm evolution;389
1.17.1.4;14.1.4 Loss of ring current through charge exchange collisions;389
1.17.1.5;14.1.5 Pitch angle scattering by wave–particle interactions;392
1.17.1.6;14.1.6 ENA imaging of the ring current;394
1.17.2;14.2 Storm-Time Radiation Belts;395
1.17.2.1;14.2.1 Sources of radiation belt ions;395
1.17.2.2;14.2.2 Losses of radiation belt ions;396
1.17.2.3;14.2.3 Transport and acceleration of electrons;397
1.17.2.4;14.2.4 Electron losses;403
1.18;15. Space Storms in the Atmosphere and on the Ground;405
1.18.1;15.1 Coupling to the Neutral Atmosphere;405
1.18.1.1;15.1.1 Heating of the thermosphere;406
1.18.1.2;15.1.2 Solar proton events and the middle atmosphere;406
1.18.2;15.2 Coupling to the Surface of the Earth;407
1.19;References;410
1.20;Index;422




