Buch, Englisch, 311 Seiten, Format (B × H): 178 mm x 235 mm, Gewicht: 1260 g
Buch, Englisch, 311 Seiten, Format (B × H): 178 mm x 235 mm, Gewicht: 1260 g
Reihe: Springer Undergraduate Mathematics Series
ISBN: 978-1-85233-781-0
Verlag: Springer
For this second edition, the text has been thoroughly revised and expanded. New features include:
· a substantial new chapter, featuring a constructive proof of the Radon-Nikodym theorem, an analysis of the structure of Lebesgue-Stieltjes measures, the Hahn-Jordan decomposition, and a brief introduction to martingales
· key aspects of financial modelling, including the Black-Scholes formula, discussed briefly from a measure-theoretical perspective to help the reader understand the underlying mathematical framework.
In addition, further exercises and examples are provided to encourage the reader to become directly involved with the material.
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
Weitere Infos & Material
Content.- 1. Motivation and preliminaries.- 1.1 Notation and basic set theory.- 1.2 The Riemann integral: scope and limitations.- 1.3 Choosing numbers at random.- 2. Measure.- 2.1 Null sets.- 2.2 Outer measure.- 2.3 Lebesgue-measurable sets and Lebesgue measure.- 2.4 Basic properties of Lebesgue measure.- 2.5 Borel sets.- 2.6 Probability.- 2.7 Proofs of propositions.- 3. Measurable functions.- 3.1 The extended real line.- 3.2 Lebesgue-measurable functions.- 3.3 Examples.- 3.4 Properties.- 3.5 Probability.- 3.6 Proofs of propositions.- 4. Integral.- 4.1 Definition of the integral.- 4.2 Monotone convergence theorems.- 4.3 Integrable functions.- 4.4 The dominated convergence theorem.- 4.5 Relation to the Riemann integral.- 4.6 Approximation of measurable functions.- 4.7 Probability.- 4.8 Proofs of propositions.- 5. Spaces of integrable functions.- 5.1 The space L1.- 5.2 The Hilbert space L2.- 5.3 The LP spaces: completeness.- 5.4 Probability.- 5.5 Proofs of propositions.- 6. Product measures.- 6.1 Multi-dimensional Lebesgue measure.- 6.2 Product ?-fields.- 6.3 Construction of the product measure.- 6.4 Fubini’s theorem.- 6.5 Probability.- 6.6 Proofs of propositions.- 7. The Radon—Nikodym theorem.- 7.1 Densities and conditioning.- 7.2 The Radon—Nikodym theorem.- 7.3 Lebesgue—Stieltjes measures.- 7.4 Probability.- 7.5 Proofs of propositions.- 8. LimitL theorems.- 8.1 Modes of convergence.- 8.2 Probability.- 8.3 Proofs of propositions.- Solutions.- References.