Kopf / Köpf | Meta-learning | Buch | 978-1-58603-562-4 | sack.de

Buch, Englisch, 250 Seiten

Reihe: Dissertations in Artificial Intelligence: Infix

Kopf / Köpf

Meta-learning

Strategies, Implementations, and Evaluations for Algorithm Selection
1. Auflage 2005
ISBN: 978-1-58603-562-4
Verlag: IOS Press

Strategies, Implementations, and Evaluations for Algorithm Selection

Buch, Englisch, 250 Seiten

Reihe: Dissertations in Artificial Intelligence: Infix

ISBN: 978-1-58603-562-4
Verlag: IOS Press


Data analysis via supervised learning tasks is among the most common data mining techniques. The objective of meta-learning is to generate a user-supporting system for selection of the most appropriate supervised learning algorithms for such tasks. The meta-learning framework is usually based upon a classification on the meta-level often disregarding a large amount of information gained during the induction process. The performance of supervised learning algorithms is also clearly dependent on the quality of the data. And, considering only a small subset of meta-attributes may significantly reduce both the time and effort applied for the corresponding measurement process.

In this book, the extent to which the issues above impact the performance of a meta-learning system is evaluated and solutions for remedying the difficulties observed are presented. In particular, the accuracies of the base learners are predicted, thus avoiding the rigid decision on a single-best learner. Subsequently, the severity of data quality issues is investigated. In order to improve the performance of the meta-learning system, various feature selection approaches are employed. Experimental evaluations performed on real-world domains show that the ideas developed in this book are indeed useful in alleviating some of the difficulties encountered in the area of meta-learning.

Kopf / Köpf Meta-learning jetzt bestellen!


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.