Koolagudi / Rao | Emotion Recognition using Speech Features | Buch | 978-1-4614-5142-6 | sack.de

Buch, Englisch, 124 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2175 g

Reihe: SpringerBriefs in Speech Technology

Koolagudi / Rao

Emotion Recognition using Speech Features


2013
ISBN: 978-1-4614-5142-6
Verlag: Springer

Buch, Englisch, 124 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 2175 g

Reihe: SpringerBriefs in Speech Technology

ISBN: 978-1-4614-5142-6
Verlag: Springer


“Emotion Recognition Using Speech Features” provides coverage of emotion-specific features present in speech. The author also discusses suitable models for capturing emotion-specific information for distinguishing different emotions.  The content of this book is important for designing and developing  natural and sophisticated speech systems.
In this Brief, Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about exploiting multiple evidences derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Features includes discussion of:

• Global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information;
• Exploiting complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance;
• Proposed multi-stage and hybrid models for improving the emotion recognition performance.
This brief is for researchers working in areas related to speech-based products such as mobile phone manufacturing companies, automobile companies, and entertainment products as well as researchers involved in basic and applied speech processing research.

Koolagudi / Rao Emotion Recognition using Speech Features jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Introduction.- Speech Emotion Recognition: A Review.- Emotion Recognition Using Excitation Source Information.- Emotion Recognition Using Vocal Tract Information.- Emotion Recognition Using Prosodic Information.- Summary and Conclusions.- Linear Prediction Analysis of Speech.- MFCC Features.- Gaussian Mixture Model (GMM)


K. Sreenivasa Rao is at the Indian Institute of Technology, Kharagpur, India.
Shashidhar G, Koolagudi is at the Graphic Era University, Dehradun, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.