E-Book, Englisch, 552 Seiten
Kontoghiorghes Handbook of Parallel Computing and Statistics
Erscheinungsjahr 2010
ISBN: 978-1-4200-2868-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 552 Seiten
Reihe: Statistics: A Series of Textbooks and Monographs
            ISBN: 978-1-4200-2868-3 
            Verlag: Taylor & Francis
            
 Format: PDF
    Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Technological improvements continue to push back the frontier of processor speed in modern computers. Unfortunately, the computational intensity demanded by modern research problems grows even faster. Parallel computing has emerged as the most successful bridge to this computational gap, and many popular solutions have emerged based on its concepts, such as grid computing and massively parallel supercomputers. The Handbook of Parallel Computing and Statistics systematically applies the principles of parallel computing for solving increasingly complex problems in statistics research. This unique reference weaves together the principles and theoretical models of parallel computing with the design, analysis, and application of algorithms for solving statistical problems. After a brief introduction to parallel computing, the book explores the architecture, programming, and computational aspects of parallel processing. Focus then turns to optimization methods followed by statistical applications. These applications include algorithms for predictive modeling, adaptive design, real-time estimation of higher-order moments and cumulants, data mining, econometrics, and Bayesian computation. Expert contributors summarize recent results and explore new directions in these areas. Its intricate combination of theory and practical applications makes the Handbook of Parallel Computing and Statistics an ideal companion for helping solve the abundance of computation-intensive statistical problems arising in a variety of fields.
Zielgruppe
Applied statisticians in computer science information technology, economics, and data mining; computer scientists; and information technologists.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
General—Parallel Computing 
A Brief Introduction to Parallel Computing; M. Paprzycki and P. Stpiczynski 
Parallel Computer Architecture; T. Trancoso and P. Evripidou 
Fortran and Java for High-Performance Computing; H. Perrott, C. Phillipe and T. Stitt 
Parallel Algorithms for the Singular Value Decomposition; M.W. Berry, D. Mezher, B. Philippe and A. Sameh 
Iterative Methods for the Partial Eigensolution of Symmetric Matrices on Parallel Machines; M. Clint 
Optimization 
Parallel Optimization Methods; Y. Censor and S.A. Zenios 
Parallel Computing in Global Optimization; M. D’Apuzzo, M. Marino, A. Migdalas, P.M. Pardalos and G. Toraldo 
Nonlinear Optimization: A Parallel Linear Algebra Standpoint; M. D’Apuzzo, M. Marino, A. Migdalas and P.M. Pardalos 
Statistical Applications 
On Some Statistical Methods for Parallel Computation; E.J. Wegman 
Parallel Algorithms for Predictive Modeling; M. Hegland 
Parallel Programs for Adaptive Designs; Q.F. Stout and J. Hardwick 
A Modular VLSI Architecture for the Real-Time Estimation of Higher Order Moments and Cumulants; S. Manolakos 
Principal Component Analysis for Information Retrieval; M.W. Berry and D.I. Martin 
Matrix Rank Reduction for Data Analysis and Feature Extraction; H. Park and L. Elden 
Parallel Computation in Econometrics: A Simplified Approach; J.A. Doornik, N. Shephard and D.F. Hendry 
Parallel Bayesian Computation; D.J. Wilkinson 
Index





