Kolobov / Mausam | Planning with Markov Decision Processes | Buch | 978-3-031-00431-5 | sack.de

Buch, Englisch, 194 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 406 g

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

Kolobov / Mausam

Planning with Markov Decision Processes

An AI Perspective
1. Auflage 2012
ISBN: 978-3-031-00431-5
Verlag: Springer Nature Switzerland

An AI Perspective

Buch, Englisch, 194 Seiten, Format (B × H): 191 mm x 235 mm, Gewicht: 406 g

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

ISBN: 978-3-031-00431-5
Verlag: Springer Nature Switzerland


Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment. This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems. Table of Contents: Introduction / MDPs / Fundamental Algorithms / Heuristic Search Algorithms / Symbolic Algorithms / Approximation Algorithms / Advanced Notes

Kolobov / Mausam Planning with Markov Decision Processes jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- MDPs.- Fundamental Algorithms.- Heuristic Search Algorithms.- Symbolic Algorithms.- Approximation Algorithms.- Advanced Notes.


Mausam is a Research Assistant Professor at the Turing Center in the Department of Computer Science at the University of Washington, Seattle. His research interests span various sub-fields of artificial intelligence, including sequential decision making under uncertainty, large scale natural language processing, Web information systems, heuristic search, machine learning, and AI applications to crowd-sourcing. Mausam obtained a Ph.D. from University of Washington in 2007 and a Bachelor of Technology from IIT Delhi in 2001. His PhD thesis was awarded honorable mention for the 2008 ICAPS Best Dissertation Award. Mausam has written scores of papers in top AI conferences and journals. He has served on the senior program committees of AI conferences such as AAAI and IJCAI, program committees of several other conferences, and on NSF panels.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.